Adaptive Immune Gene Signatures Correlate with Response to Flotetuzumab, a CD123 × CD3 Bispecific DART® Molecule, in Patients with Relapsed/Refractory Acute Myeloid Leukemia

Sergio Rutella, MD, PhD, FRCPa1, Sarah E. Church, PhD2*, Jayakumar Vadakekolathu, PhD1*, Elena Viboeh, MSc2*, Amy H. Sullivan, BSc2*, Tressa Hood, MSc2*, Sarah E. Warren, PhD2*, Alessandra Cesano, MD, PhD2, Ross La Motte-Mohs, PhD3*, John Muth, MS3*, Helene Lelièvre, PhD, PharmD4*, Bob Löwenberg, MD, PhD5, John F. DiPersio, MD, PhD6 and Jan K. Davidson-Moncada, MD, PhD3

1John van Geest Cancer Research Centre, Nottingham Trent University, United Kingdom
2NanoString Technologies Inc., Seattle, WA
3MacroGenics Inc., Rockville, MD
4Servier, Paris, France
5Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
6Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
Background

- Cytotoxic chemotherapy remains the standard-of-care for most patients with acute myeloid leukemia (AML), in spite of the recent approval of novel agents
 - The investigation of new molecularly-targeted and immuno-modulating agents remains a high priority
- Immunotherapies such as monoclonal antibodies, bispecific molecules, immune checkpoint blockade (ICB) and CD123-CAR T cells are currently under investigation in AML
- There is an urgent need for predictive biomarkers to help identify patients who are more likely to respond to cancer immunotherapy
 - Tumor Mutational Burden (TMB) identifies responders to pembrolizumab in KEYNOTE clinical trials across 22 solid tumor types (Cristescu R, et al. Science 2018; 362:6411)
- Flotetuzumab, a CD123 × CD3 bispecific DART® molecule, is being tested in a phase 1 clinical trial of relapsed/refractory AML (NCT#02152956)
- See also presentation #764. Monday, December 3, 2018: 3:00PM
 - Dr. John DiPersio, Session #616. Acute Myeloid Leukemia: Novel Therapy Seaport Ballroom F (Manchester Grand Hyatt San Diego)
Diversity of immune landscapes in AML

Immune-inflamed TME is associated with resistance to cytotoxic chemotherapy

Immune profiles in the tumor microenvironment (TME)
1. Innate (PMN, macrophages)
2. Adaptive (T, B, NK, CTL)
3. Mast cells, exhausted CD8+ T cells

Discovery cohort (n=62)
34 non-promyelocytic de novo childhood AML
(Dr. Sarah K. Tasian, Children’s Hospital of Philadelphia, USA)
28 non-promyelocytic de novo adult AML
(Professor Martin Bornhäuser, Dresden, Germany)

Expression of IFN-stimulated genes in BM associates with poor prognosis in AML

A Altered in 18 (11%) of 162 sequenced patients in TCGA-AML

<table>
<thead>
<tr>
<th>Genetic Alteration</th>
<th>CD274</th>
<th>MX1</th>
<th>IFIT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplification</td>
<td>4%</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>mRNA Upregulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No alterations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

416 genes up in patients with abnormalities in query genes
174 genes down in patients with abnormalities in query genes

B

-10 >-8 >-6 >-4 >-2 0 2 4 6 Log Ratio

<0.005 P-value

Significance

Under-expressed
Over-expressed

Intermediate (n=5)
- 7+3 (n=9)
- HMA (n=6)
- Lenalidomide (n=1)
- None (n=2)

Adverse (n=13)
- Yes (n=2 MUD; n=2 MRD)
- No (n=14)

CR (n=3)
- No CR (n=14)
- Persistent disease (n=1)

C

TP53

P=0.000537

D

Alterations in query genes (median=10.3 mo)
No alterations in query genes (median=20.8 mo)

HR=2.67 (95% CI: 0.87-8.17)

Relapse-Free Survival Time (Months)

Number at risk
Query genes not altered
- 142
- 18
Query genes altered
- 69
- 3

Overall Survival Time (Months)

Number at risk
Query genes not altered
- 144
- 18
Query genes altered
- 86
- 8
Research questions

IFN-\(\gamma\)-related signatures reflecting an “inflamed” TME are associated with adverse prognosis in patients with AML receiving conventional chemotherapy

Are immune-infiltrated/inflamed TMEs, and IFN-\(\gamma\) gene signatures, associated with sensitivity to flotetuzumab?
Patients and methods

• Immune gene expression was analyzed in 65 bone marrow (BM) samples from patients with relapsed/refractory AML treated with flotetuzumab in NCT#02152956 (Vey, et al. ESMO 2017; Uy, et al. ASH 2017; Uy, et al. ASH 2018)
 • 38 samples collected at baseline (35 with clinical outcome data)
 • 4 patients, 300 ng/kg/day
 • 28 patients, 500 ng/kg/day (RP2D)
 • 6 patients, 700 ng/kg/day
 • 27 samples collected “on treatment” (post-cycle 1)

• The NanoString PanCancer IO360™ assay interrogates the expression of 770 genes, including the abundance of 14 immune cell types and 32 immuno-oncology signatures
 • Signature scores were calculated as pre-defined linear combinations (weighted averages) of biologically relevant gene sets
Patients’ characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All patients (n=38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median and range)</td>
<td>64 years (29-82)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16 (42.1%)</td>
</tr>
<tr>
<td>Female</td>
<td>22 (57.9%)</td>
</tr>
<tr>
<td>Disease status at time of enrolment</td>
<td></td>
</tr>
<tr>
<td>Relapse</td>
<td>8 (21.1%)</td>
</tr>
<tr>
<td>Primary refractory (73.7%)§</td>
<td></td>
</tr>
<tr>
<td>Hypomethylating agents (HMA)</td>
<td>12 (31.6%)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>16 (42.1%)</td>
</tr>
<tr>
<td>Not classifiable (Failed ≤ 2 cycles of HMA)</td>
<td>2 (5.2%)</td>
</tr>
<tr>
<td>2017 ELN risk stratification</td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>7 (18.4%)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>12 (31.6%)</td>
</tr>
<tr>
<td>Adverse</td>
<td>13 (34.2%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>6 (15.8%)</td>
</tr>
<tr>
<td>Number of prior lines of therapy (median and range)</td>
<td>3 (1-11)</td>
</tr>
</tbody>
</table>

§Primary refractory: Chemotherapy-refractory (≥2 induction attempts or 1st CR with initial CR duration <6 months) HMA-refractory (failure of ≥4 cycles of HMAs)

Response assessment criteria: Anti-leukemic activity (CR/CRi, PR, “other benefit”*)
Non-responders (treatment failure, stable disease, progressive disease)

*Other benefit defined as >30% decrease in BM blasts
Immune gene signatures at baseline (I)

Immune-infiltrated (InnateposAdaptivepos)

N=21

Anti-leukemic activity
31.6% (6/19)
3 CR, 2 OB, 1 PR

No response
13/19

N.A.*
2/21

ELN cytogenetic risk at time of initial diagnosis (all patients)
Favorable (n=5)
Intermediate (n=9)
Adverse (n=5)
N.A. (n=2)

Favorable (n=2)
Intermediate (n=3)
Adverse (n=8)
N.A. (n=4)

Immune-depleted (InnatenegAdaptiveneg)

N=17

Anti-leukemic activity
12.5% (2/16)
1 CRi, 1 OB

No response
14/16

N.A.*
1/17

ELN cytogenetic risk at time of initial diagnosis (patients with evidence of anti-leukemic activity)
Favorable (n=1)
Intermediate (n=3)
Adverse (n=1)
N.A. (n=1)

Favorable (n=0)
Intermediate (n=0)
Adverse (n=2)
N.A. (n=0)

*Response data available in 35/38 patients

AA = Anti-leukemic activity
NR = No response
NA = Not available
immune gene signatures at baseline (ii)

AA = Anti-leukemic activity
NR = No response
NA = Not available

Exhausted

Dysfunctional T cells?
Immune gene signatures at baseline (III)

AA = Anti-leukemic activity
NR = No response
NA = Not available

Immune-inflamed

Immune-exhausted

Immune-infiltrated (Innate^{pos}Adaptive^{pos})

"IFN-γ-dominant" TME?
Immune signatures and flotetuzumab response

Table

<table>
<thead>
<tr>
<th></th>
<th>Immune-inflamed (n=5)</th>
<th>Immune-exhausted (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-leukemic activity</td>
<td>40% (2/5)</td>
<td>29% (4/14)</td>
</tr>
<tr>
<td></td>
<td>1 CR, 1 OB</td>
<td>2 CR, 1 OB, 1 PR</td>
</tr>
<tr>
<td>No response</td>
<td>3/5</td>
<td>10/14</td>
</tr>
<tr>
<td>*N.A.</td>
<td>0/5</td>
<td>2/16</td>
</tr>
<tr>
<td>Previous HMA treatment</td>
<td>40% (2/5)</td>
<td>62.5% (10/16)</td>
</tr>
<tr>
<td>ELN cytogenetic risk at time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of initial diagnosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(all patients)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Favorable (n=1)</td>
<td>Favorable (n=4)</td>
</tr>
<tr>
<td></td>
<td>Intermediate (n=0)</td>
<td>Intermediate (n=9)</td>
</tr>
<tr>
<td></td>
<td>Adverse (n=4)</td>
<td>Adverse (n=1)</td>
</tr>
<tr>
<td></td>
<td>N.A. (n=0)</td>
<td>N.A. (n=2)</td>
</tr>
<tr>
<td>ELN cytogenetic risk at time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of initial diagnosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(patients with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>evidence of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anti-leukemic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>activity)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Favorable (n=1)</td>
<td>Favorable (n=0)</td>
</tr>
<tr>
<td></td>
<td>Intermediate (n=0)</td>
<td>Intermediate (n=3)</td>
</tr>
<tr>
<td></td>
<td>Adverse (n=1)</td>
<td>Adverse (n=0)</td>
</tr>
<tr>
<td></td>
<td>N.A. (n=0)</td>
<td>N.A. (n=1)</td>
</tr>
</tbody>
</table>

*Response data available in 35/38 patients

PLEASE DO NOT POST
Increased immune exhaustion signatures in HMA-refractory vs. chemotherapy-refractory patients

A

- Down-regulated in HMA-refractory versus chemotherapy-refractory
- Up-regulated in HMA-refractory versus chemotherapy-refractory

- Proliferation
- JAK-STAT loss
- Endothelial cells
- BT-H3
- APM loss
- Glycolysis
- Mast cells
- Cytotoxicity
- Cytotoxic cells
- CD8 T cells
- Lymphoid
- T-cells
- Treg
- CTLA4
- TIGIT
- NK cells
- NK CD56dim cells
- NK cells
- Apoptosis
- Hypoxia
- ARG1
- IL10
- IFN gamma
- Macrophages
- Myeloid
- Neutrophils
- PD-L2
- Stromal
- DC
- MAOEs
- IDO1
- B-cells
- PD-1
- NOS2
- Inflam chemokines
- PD-L1
- CD45
- Exhausted CD8
- Immunoproteasome
- APM
- IFN downstream
- Myeloid inflam
- MHC2
- TGFB-beta
- MMR loss

B

- **TIGIT expression**
 - P=0.006

- **PD-L1 expression**
 - P=0.0096

- **Exhausted CD8 T cells**
 - P=NS

- **Treg cell abundance**
 - P=0.009

*Evaluated in a subset of 22 patients (8 HMA-refractory, 14 chemotherapy-refractory)

PLEASE DO NOT POST
Flotetuzumab treatment enhances tumor inflammation, antigen presentation and IFN-γ signaling signatures.

A

Down-regulated post-cycle 1 versus baseline

Up-regulated post-cycle 1 versus baseline

- Proliferation
- JAK-STAT loss
- Endothelial cells
- BT-H3
- APM loss
- Glycolysis
- Mast cells
- Cytotoxicity
- Cytotoxic cells
- CD8 T cells
- Lymphoid
- T-cells
- Treg
- CTLA4
- TIS
- T helper cells
- TIGIT
- NK CD56dim cells
- NK cells
- Apoptosis
- Hypoxia
- ARID1
- IL10
- IFN gamma
- Macrophages
- Myeloid
- Neutrophils
- PD-L2
- Stroma
- DC
- MAGEs
- IDO1
- B-cells
- PD-1
- NKG2
- Inflam chemokines
- PD-L1
- CD45
- Exhausted CD8
- Immunoproteasome
- APM
- IFN downstream
- Myeloid inflam
- MHC2
- TGF-beta
- MMR loss

B

B

Tumor inflammation signature (TIS) score

- Log2 fold-change

B

IFN-γ signaling score

- P=0.015

B

Immunoproteasome score

- P=0.0002

B

Antigen processing machinery (APM) score

- P=0.0015

- P=0.06

Non-responders

Anti-leukemic activity

PLEASE DO NOT POST
IFN-γ signaling scores are associated with response to flotetuzumab

Down-regulated in anti-leukemic activity versus non-responders
- Proliferation
- JAK-STAT loss
- Endothelial cells
- B7-H3
- APM loss
- Glycolysis
- Mast cells
- Cytotoxicity
- Cytotoxic cells
- CD8 T cells
- Lymphoid
- T-cells
- Treg
- CTLA4
- Tim3
- Th1 cells
- TIGIT
- NK CD56dim cells
- NK cells
- Apoptosis
- Hypoxia
- ARG1
- IL10

Up-regulated in anti-leukemic activity versus non-responders
- Macrophages
- Myeloid
- Neutrophils
- PD-L2
- Stromal DC
- MAGEs
- IDO1
- B-cells
- PD-1
- NOS2
- Inflamm chemokines
- PD-L1
- CD45
- Exhausted CD8
- Immunoresponse
- APM
- IFN downstream
- Myeloid inflam
- MHC2
- TGF-beta
- MMR loss

Receiver operating characteristic (ROC) curve analysis
- AUC = 0.815
- 97.5% CI = 0.805 (SE = 0.15)
- Z-score = 3.188
- P = 0.0014

PLEASE DO NOT POST
Predictors of ICB response in solid tumors

Ayers M, et al.

Cristescu R, et al.
Science 2018; 362 (6411): eaar3593

18-gene score (Tumor Inflammation Signature) for a cohort of 96 patients with HNSCC from KEYNOTE-012

IFN-γ signaling signature for flotetuzumab
Conclusions

• Evidence for a **range of immune profiles** in the AML TME was previously presented and confirmed here.

• As opposed to prior experience with chemotherapy, most patients showing evidence of anti-leukemic activity with flotetuzumab [6/8 (75%)] in this initial data set had a gene signature consistent with higher immune infiltration in the bone marrow.

• More specifically, **IFN-γ-related gene profiles** at baseline may associate with clinical response to flotetuzumab.

• Patients previously treated with HMAs showed an immune-exhausted TME:
 • We hypothesize that flotetuzumab could invigorate an immune-exhausted TME (increased tumor inflammation, antigen processing/presentation and IFN-γ signaling scores).

• Patients with an immune-infiltrated TME had increased immune checkpoint expression, suggesting potential enhanced benefit from flotetuzumab in combination with immune checkpoint blockade.
Acknowledgements

Patients and Families!

Previous AML work
Tasleema Patel
Sarah K. Tasian
Division of Oncology and
Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, PA

Heidi Altmann
Martin Bornhäuser
Jörn Meinel
Marc Schmitz
SAL Studienallianz Leukämie
Carl Gustav Carus Hospital, TU Dresden,
Dresden, Germany

Clinical Sites
Max Topp, Medizinische Klinik und Poliklinik II Universitätsklinikum Würzburg, Würzburg, Germany
Norbert Vey, Institut Paoli-Calmettes, Marseille, France
Fabio Ciceri, IRCCS Ospedale San Raffaele, Milan, Italy
Stefania Paolini, Policlinico S. Orsola-Malpighi, Bologna, Italy
Gerwin Huls, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
Bob Löwenberg, Erasmus University Medical Center, Rotterdam, The Netherlands
Geoffrey Uy, Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, U.S.A.
David Rizzieri, Duke University Medical Center, Durham, NC, U.S.A.
Martha Arellano, Winship Cancer Institute of Emory University School of Medicine, Atlanta, GA, U.S.A.
Matthew Foster, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, U.S.A.
John Godwin, Providence Cancer Center, Earle A. Chiles Research Institute, Portland, OR, U.S.A.
Farhad Ravandi, The University of Texas M D Anderson Cancer Center, Houston, TX, U.S.A.
Kendra Sweet, Moffitt Cancer Center, Tampa, FL, U.S.A.
Ibrahim Aldoss, City of Hope National Medical Center, Duarte, CA, U.S.A.

Nottingham Trent University
Alan Graham Pockley
Stephen Reeder
Jayakumar Vadakekolathu

NanoString Technologies, Inc.
Alessandra Cesano
Sarah E. Church
Tressa Hood
Amy Sullivan
Elena Viboch
Sarah E. Warren

MacroGenics, Inc.
Jan K. Davidson-Moncada
Ross La Morte-Mohs
John Muth

Roger Counter Foundation
Dorset, 2017-2019

Mainstream QR funding, 2017-2018