Phase II Neoadjuvant and Immunologic Study of B7-H3 Targeting with Enoblituzumab in Localized Intermediate- and High-Risk Prostate Cancer

Eugene Shenderov,1 Karim Boudadi,1 Angelo DeMarzo,1 Mohamad E Allafl,1 Onur Ertunc1, Igor Vidal1, Carolyn Chapman1, Hao Wang1, Jim Vasselli2, Jon Wigginton,2 Jan Davidson2, Rehah Abdallah1, Tanya O’Neal1, Christian Pavlovich3, Trinity Bivalacqua4, Ashley E. Ross3, Charles G. Drake1,3

Drew Pardoll1 & Emmanuel S. Antonarakis1

1 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA; 2 MacroGenics, Inc., Rockville, MD, USA; 3 The James Buchanan Brady Urological Institute at Johns Hopkins University, Baltimore, MD, USA

KEY STUDY ENDPOINTS

SUMMARY

This study aims to understand the impact of B7-H3 targeting/blockade on PSA recurrence following prostatectomy, impact on the prostate gland tumor microenvironment (TME), and assess whether (like PD-L1 status) B7-H3 IHC staining can be used to predict response or resistance to B7-H3–targeted therapies.

REFERENCES

Kim et al. BJU International. 2016 May;85:93.

ACKNOWLEDGEMENTS

Study sponsors: Emmanuel Antonarakis, M.D. (Ph), Macrogenics, Inc., Rockville, MD
Study contact: Eugene.Shenderov@jhmi.edu (prescribing author)
EugeneShenderov@jhmi.edu (corresponding author)

BACKGROUND

- Prostate cancer (PCa) is the second-most common cause of cancer-related death in men, killing approximately one in 50 American males.
- Immune-checkpoint blockade has resulted in unprecedented treatment advances in multiple tumor types, despite yielding modest results in PCa.

STUDY DESIGN

- This is a single-center, single-arm, phase 2 study evaluating the safety, anti-tumor effect, and immunogenicity of neoadjuvant Enoblituzumab (MGA271) given prior to radical prostatectomy in men with intermediate and high-risk localized prostate cancer.
- Eligible patients (n=32) will receive Enoblituzumab at a dose of 15mg/kg IV given weekly for 6 doses beginning 50 days prior to radical prostatectomy.
- Follow-up evaluation for adverse events will occur 30 days and 90 days after surgery.

PRELIMINARY RESULTS

Figure 4: Prostatectomy immunohistochemistry staining from two patients (I and II) following neoadjuvant Enoblituzumab treatment. Small malignant glands lined by enlarged atypical epithelial cells show clear membrane staining by both anti-B7-H3 (A and F) and anti-Enoblituzumab (anti-MGA271, C and H). Adjacent non-malignant prostatic ducts show relatively negative membrane staining (B-E and D-G).

Figure 5: Prostatectomy immunohistochemistry (IHC) staining from a patient following neoadjuvant Enoblituzumab treatment. Shown are CD8+ T cell infiltrates (arrows) which are in close proximity to atypical malignant glands (arrows).

CD8+ T cell quantitation in the Enoblituzumab-treated prostatectomy samples indicates a statistically significant increase in infiltrate compared to age- and stage-matched untreated prostatectomy controls (via direct ADCC or indirectly via T cell killing) using TUNEL staining and cleaved Caspase 3 staining.

REFERENCES

Kim et al. BJU International. 2016 May;85:93.

KEY STUDY ENDPOINTS

- Primary endpoints: Clinical activity and severity of adverse events
- Estimation of clinical benefit based on the PSA, response rate (PSA <0.1 ng/mL) at 12 months after radical prostatectomy, as well as time to PSA recurrence and pathologic response

Correlative endpoints:
- Quantification of Enoblituzumab-induced tumor cell death (via direct ADC or indirectly via T cell killing) using TUNEL staining and cleaved Caspase 3 staining
- To assess the immune response to Enoblituzumab using quantification of CD8 T cell infiltration into the tumor/SF tumor areas, determining the effect of Enoblituzumab treatment on the CD8/Treg ratio, and quantifying the extent of PD-L1+ cell density in the prostate from harvested prostate gland tissue of treated patients

SUMMARY

This study aims to understand the impact of B7-H3 targeting/blockade on PSA recurrence following prostatectomy, impact on the prostate gland tumor microenvironment (TME), and assess whether (like PD-L1 status) B7-H3 IHC staining can be used to predict response or resistance to B7-H3–targeted therapies.

STUDY HYPOTHESIS

- Neoadjuvant Enoblituzumab treatment in patients with high-risk localized PCa will lead to partial pathological responses and reduce biochemical recurrence following prostatectomy, initially by modulating T cell immunity in the tumor microenvironment (TME) and also direct tumor killing via ADCC.
- Additionally, the proposed immunologic analyses from these patients are expected to test the hypothesis that Enoblituzumab treatment enhances PCA-specific T cell responses systemically, and further, to identify additional immunologic targets for combinatorial immunotherapies.

STUDY AIMs

1. To determine Fc receptor genotype (CD16A, CD32A, CD64) and TIM3, all of which are targets for existing clinical antibodies in pre- and post-treatment tumor tissue
2. To determine Fc receptor genotype (CD16A, CD32A, CD32B), which could affect Enoblituzumab’s ADC activity as it does with Rituximab
3. To analyze the tumor-specific repertoire using TCRTseq-based technologies, testing the hypothesis that successful anti-tumor responses modulate the TCR repertoire in peripheral and tumor-infiltrating lymphocytes and assessing relative responses to mutation-associated neoantigens (MANAs) vs PCa tumor-associated antigens (TAAs).

PRELIMINARY RESULTS

SPECIAL AIMS

- To determine whether Enoblituzumab mediated B7-H3 inhibition is safe, effective and immunologically active in the pre-surgical PCa setting by conducting a phase II neoadjuvant clinical trial in 32 men with high-risk localized PCa scheduled for prostatectomy.
- To determine whether Enoblituzumab results in pathologic anti-tumor responses and will improve prostatectomy outcomes in patients with localized PCa.
- To interrogate mutation-associated neoantigen-specific T cell responses induced by anti-B7-H3 therapy, analyze targetable immune-checkpoints adaptively-induced upon Enoblituzumab treatment, as well as elucidate the repertoire and gene-expression profiles of tumor-specific tumor-infiltrating T cells (TILs) utilizing multi-parameter flow cytometry and RNAseq. This first-in-field translational study of Enoblituzumab in PCa will allow concurrent exploration of its clinical efficacy and anti-tumor immunity.

Figure 3. Schema for the neoadjuvant Enoblituzumab clinical trial (NCT02923180).