TP53 abnormalities correlate with immune infiltration and are associated with response to flotetuzumab, an investigational immunotherapy, in acute myeloid leukemia

Jayakumar Vadakekolathu¹, Catherine Lai², Stephen Reeder¹, Sarah E. Church³, Tressa Hood³, John Muth⁴, Heidi Altmann⁵, Marilena Ciciarello⁶, Antonio Curti⁶, Peter J.M. Valk⁷, Bob Löwenberg⁷, Martin Bornhäuser⁸, John F. DiPersio⁹, Jan K. Davidson-Moncada⁴, Sergio Rutella¹,¹⁰

¹John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK; ²MedStar Georgetown University Hospital’s Lombardi Comprehensive Cancer Center, Washington, DC; ³NanoString Technologies Inc., Seattle, WA; ⁴MacroGenics Inc., Rockville, MD; ⁵Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; ⁶Institute of Hematology “L. and A. Serágnoli”, Department of Hematology and Oncology, University Hospital S. Orsola-Malpighi, Bologna, Italy; ⁷Department of Hematology, Erasmus University Medical Centre, Rotterdam, The Netherlands; ⁸Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO; ¹⁰Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK.

sergio.rutella@ntu.ac.uk
Disclosures

- MacroGenics Inc.; Research funding
- NanoString Technologies Inc.; Research funding
Background

• Chemotherapy remains the standard of care for most patients with AML, despite recent approvals of novel drugs

• We have identified immune subgroups of AML (‘immune-infiltrated’ and ‘immune-depleted’) that predict chemotherapy resistance but also response to flotetuzumab immunotherapy (Vadakekolathu J, et al. Under revision)

 • The genetic drivers of immune infiltration in AML are presently unknown

• TP53 mutations occur in 8-10% of de novo AML cases and are associated with chemotherapy resistance, high risk of relapse and dismal prognosis even after hematopoietic stem cell transplantation

• The functional consequences of TP53 mutation/inactivation on host immune regulation have been largely overlooked in AML

 • The TP53 mutants studied thus far in AML do not show any evidence of gain-of-function mechanisms (Boettcher S, et al. Science 2019)
Objectives

• To determine whether TP53 abnormalities correlate with the composition and functional orientation of the tumor immunological microenvironment (TME) in AML

• To determine whether TP53 abnormalities identify a subgroup of patients with AML that may benefit from immunotherapy with flotetuzumab, a CD123×CD3 bispecific DART® molecule for redirecting host T cells to AML (Chichili GR, et al. Science Translational Medicine 2015) in the CP-MGD006-01 clinical trial (NCT#02152956)
Graphical ‘cohorts and methods’

A - In silico analyses (TCGA-AML)
- 147 non-promyelocytic AMLs (14 with TP53 mutations)
- Immune cell type and biological activity gene signatures (computed as in Danaher P, et al. JITC 2017 and 2018)
- Correlation with prognostic molecular lesions (TP53 mutational status, NPM1 mutational status, FLT3-ITD status, CHIP-defining mutations) and clinical outcomes (Cox PH)

B - Primary AML blasts
- TP53-mutated (n=42)
 - RNA extraction
 - Targeted Immune GEP (PanCancer IO 360™ Panel) - RUO
 - DE genes
 - GO ontologies (METASCAPE)
 - Network analysis
- TP53-wt (n=22)

C - Flotetuzumab cohort (n=35)
- TP53-mutated and/or 17p abnormalities with genomic loss of TP53 (n=11)
- Predictors of response
TP53 mutations associate with an immune-infiltrated TME in TCGA-AML

N=118 cases with available information on prognostic molecular lesions, including TP53 mutations (n=14)
TP53–related immune profiles in primary BMs

A

- 84% TP53 missense
- 12% TP53 no missense
- 4% N.A.

B

TP53 status
- Mutated
- WT/NA/ND

C

TP53 status
- Mutated
- WT/NA/ND

D

mRNA
- PD-L1
- LAG3
- FoxP3
- FN1
- CD8A
- PD-L1

P-values
- *P*<0.0001
- *P*<0.0001
- *P*=0.0042
- *P*=0.0013
- *P*<0.0001
- *P*<0.0001
A unique immune *TP53* classifier
TP53–related immune genes stratify survival

In *silico* prognostic power in TCGA-AML cases (18 upregulated genes in *TP53* mutated AML)

<table>
<thead>
<tr>
<th>KEGG Pathway</th>
<th>Description</th>
<th>Count in gene set</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa04060</td>
<td>Cytokine-cytokine receptor interaction</td>
<td>9 of 263</td>
<td>5.56×10⁻⁹</td>
</tr>
<tr>
<td>hsa05323</td>
<td>Rheumatoid arthritis</td>
<td>6 of 84</td>
<td>6.37×10⁻⁸</td>
</tr>
<tr>
<td>hsa04657</td>
<td>IL-17 signaling pathway</td>
<td>6 of 92</td>
<td>8.02×10⁻⁸</td>
</tr>
<tr>
<td>hsa04621</td>
<td>NOD-like receptor signaling pathway</td>
<td>6 of 166</td>
<td>1.56×10⁻⁶</td>
</tr>
<tr>
<td>hsa04668</td>
<td>TNF signaling pathway</td>
<td>5 of 108</td>
<td>4.16×10⁻⁶</td>
</tr>
</tbody>
</table>

“Altered”: mRNA up-regulation amplification deep deletion mis-sense mutations

- **Relapse-free survival time (months)**
 - Altered (median RFS=11.4 mo.)
 - Not altered (median RFS=24.1 mo.)

- **Overall survival time (months)**
 - Altered (median OS=11.4 mo.)
 - Not altered (median OS=27.0 mo.)

- Log rank \(\chi^2=7.32; HR=1.86 \text{ (95%CI 1.12-3.1)}\)
- Log rank \(\chi^2=10.94; HR=1.88 \text{ (95%CI 1.24-2.85)}\)
- \(P=0.0068\)
- \(P=0.0009\)
Flotetuzumab immunotherapy cohort

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>NCT#02152956</th>
<th>Patients (n=35)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median and range)</td>
<td></td>
<td>54 years (27-74)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>16 (46%)</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td>19 (54%)</td>
</tr>
<tr>
<td>Disease status at study entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late relapse (CR with initial duration >6 months)</td>
<td></td>
<td>7 (20%)</td>
</tr>
<tr>
<td>Refractory to HMA</td>
<td></td>
<td>2 (5.7%)</td>
</tr>
<tr>
<td>Refractory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary induction failure (PIF; ≥2 induction attempts)</td>
<td></td>
<td>20 (57.1%)</td>
</tr>
<tr>
<td>Early relapse (CR with initial duration <6 months)</td>
<td></td>
<td>6 (17.2%)</td>
</tr>
<tr>
<td>2017 ELN risk stratification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td></td>
<td>3 (8.6%)</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td>8 (22.9%)</td>
</tr>
<tr>
<td>Adverse</td>
<td></td>
<td>24 (68.6%)</td>
</tr>
<tr>
<td>Secondary AML</td>
<td></td>
<td>11 (31.4%)</td>
</tr>
<tr>
<td>Number of prior lines of therapy (median and range)</td>
<td></td>
<td>3 (1-9)</td>
</tr>
</tbody>
</table>

*Subgroup of 35/50 patients treated at the RP2D for whom BM samples were available

Response assessment criteria employed in analysis:

- **Anti-leukemic activity (ALA):** CR/CRh, PR, “other benefit” (>30% decrease in BM blasts compared to baseline)
- **Non-responders (NR):** treatment failure, stable disease, progressive disease
Flotetuzumab cohort – **TP53** mutations associate with an immune-infiltrated TME

Immune infiltration int.-to-high in 7/9 patients

ALA in 45.5% (5/11) evaluable patients with **TP53** mutations and/or 17p abnormalities (2 CR, 1 CRh, 1 morphologic leukemia-free state [MLFS], and 1 OB)
Response to flotetuzumab in TP53 mutated patients

A. BM blasts (TP53 mut./17p abn.)

- Best change from baseline (%)
- N=11 with TP53 mut./17p abn.
- Median=4.0 months (n=11)

- 42% blast reduction on average

B. TIS score

- P=0.016

- Inflammatory chemokine score

- P=0.016

- Treg score

- P=0.032

C. HOVON (TP53 mutated)

- PIF (n=6)
- CR (n=7)

- Log-rank $\chi^2=6.77$; $P=0.0093$
- HR=7.1 (95%CI 1.62-30.96)

D. HOVON cohort

- TP53 mutated (n=13; median OS=3.58 mo.)
- PIF (n=125; median OS=3.78 mo.)
Conclusions

• Immune transcriptomic analyses of *in silico* and wet-lab cohorts of *TP53* mutated AML suggest the presence of high T-cell infiltration and high expression of immune checkpoints and IFN-γ signaling molecules compared with AML subgroups with other risk-defining molecular lesions.

• Immunotherapy with flotetuzumab may be efficacious in individuals with altered *TP53* status, with an overall reduction of BM blasts averaging 42% and with evidence of ALA in 45.5% (5/11) of the patients.

• The overall response rate observed in *TP53*-mutated patients treated with flotetuzumab encourages further study of this immunotherapeutic approach.
Acknowledgements

Co-authors and Collaborators

JVGRC, NTU
Stephen Reeder
Jayakumar Vadakekolathu
Tung On Yau

PhD Students
Jenny Ashforth
Melissa Courtney

Barbara Seliger
Claudia Wickenhauser
Martin Luther University
Halle – Wittenberg, Germany

Heidi Altmann
Martin Bornhäuser
Jan Moritz Middeke
Marc Schmitz
Friedrich Stölzel
SAL Studienallianz Leukämie
Dresden, Germany

Leonido Luznik
Sidney Kimmel Comprehensive Cancer Centre
Baltimore, MD

Joseph M. Beechem
Sarah E. Church
Sarah E. Warren
Seattle, WA

Francesco M. Marincola
Menlo Park, CA

Funding Sources

National Priorities Research Programme, 2016-2020

Mainstream QR Funding, 2017-2020

Jan K. Davidson-Moncada
John Muth
Rockville, MD

The Children’s Hospital of Philadelphia
Tasleema Patel
Sarah K. Tasian
Philadelphia, PA

The Princess Margaret Hospital Foundation
Mark D. Minden
Toronto, Canada

Johns Hopkins University

nanoString Technologies

HIGHER EDUCATION FUNDING COUNCIL FOR ENGLAND

MACROGENICS

NTU