A Phase 1, First-in-Human, Open-Label, Dose Escalation Study of MGD019, an Investigational Bispecific PD-1 × CTLA-4 DART® Molecule in Patients with Advanced Solid Tumors

Manish R. Sharma,1 Rachel E. Sanborn,2 Gregory M. Cote,3 Johanna Bendell,4 Sanjeev Kaul,5 Francine Chen,6 Alexey Berezhnoy,6 Paul A. Moore,6 Ezio Bonvini,6 Bradley J. Sumrow,6 Jason J. Luke7

1START-Midwest. Grand Rapids, MI; 2Earles A. Chiles Research Institute at Providence Cancer Institute, Portland, OR; 3Massachusetts General Hospital Cancer Center, Boston, MA; 4Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; 5Bio-ClinPharm Consulting, LLC, Cranbury, NJ; 6MacroGenics, Inc., Rockville, MD; 7UPMC Hillman Cancer Center, Pittsburgh, PA.
Research support (to the institution for clinical trials):

- Alexo
- Alpine Immune Sciences
- Amgen
- Apexian
- Asana
- Ascentage
- Astellas
- AstraZeneca
- Beigene
- Bolt Biotherapeutics
- Bristol-Myers Squibb
- Celgene
- Compugen
- Coordination
- Constellation
- CytomX
- CytomX Therapeutics
- Eli Lilly
- Epizyme
- Exelixis
- Formation Biologics
- Forty Seven
- Genmab
- Ikena
- Innovent Biologics
- InhibRx
- Incyte
- Ipsen
- Jounce Therapeutics
- KLUS Pharma
- Lexicon
- Loxo
- Livzon
- MacroGenics
- Merck
- Mersana
- Northern Biologics
- Novocure
- Odonate Therapeutics
- Pfizer
- QED
- Regeneron
- Sapience
- Shattuck Labs
- Symphogen
- Syros
- TaiRx
- Tempest Therapeutics
- Tesaro
- Treadwell Therapeutics
• PD-1 and CTLA-4 are checkpoint molecules with complementary mechanisms of action
• Dual blockade has yielded enhanced efficacy with approved agents, albeit with increased toxicity
• MGD019, an investigational DART molecule:
 – Maintains uncompromised PD-1 blockade versus benchmark mAbs
 – Blocks both PD-1 and CTLA-4 pathways with potentially enhanced CTLA-4 blockade on dual-expressing cells prevalent in TME

MGD019: Bispecific Molecule Engineered for Co-Blockade of PD-1 & CTLA-4

10-100 fold enhanced activity by MGD019 relative to PD-1/CTLA-4 mAb combination
MGD019 is Well Tolerated in Non-human Primates

GLP Toxicology Results Compare Favorably to Ipilimumab + Nivolumab Preclinical Profile

<table>
<thead>
<tr>
<th>Finding</th>
<th>PD-1 × CTLA-4 bispecific (MGD019)</th>
<th>PD-1 mAb (Retifanlimab)</th>
<th>PD-1 + CTLA-4 two mAb combo<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse clinical signs</td>
<td>–</td>
<td>–</td>
<td>+<sup>b</sup></td>
</tr>
<tr>
<td>Body weight loss</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Increased spleen weight</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Lymphoid hyperplasia/hypertrophy in spleen</td>
<td>–</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Gastrointestinal tract inflammation</td>
<td>–</td>
<td>–</td>
<td>+<sup>c</sup></td>
</tr>
<tr>
<td>Cytokine induction</td>
<td>–</td>
<td>–</td>
<td>not reported</td>
</tr>
<tr>
<td>T cell expansion</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Ki67<sup>+</sup> CD8<sup>+</sup> T cell increase</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>ICOS<sup>+</sup> CD4<sup>+</sup> T cell increase</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
</tbody>
</table>

^b Dose-related diarrhea; decreased food consumption at high dose [50 mg/kg anti-PD-1 + 10 mg/kg anti-CTLA-4]

^c Large intestine: diffuse lymphoplasmacytic inflammation in the lamina propria with concurrent enlargement of the colonic or pelvic lymph nodes.

“+” = observed, with quantification (e.g., +, ++, +++); “–” = not observed
MGD019 Phase 1 Trial Design

- **Primary objectives:**
 - Safety, tolerability
 - DLTs, MTD, MAD
 - Alternate dose

- **Secondary objectives:**
 - Pharmacokinetics
 - Immunogenicity
 - Preliminary activity

- **Exploratory PD objectives:**
 - Receptor/ligand expression
 - Serum biomarkers
 - Gene expression profiling

Dose Escalation in Previously Treated Advanced Solid Tumors

- Weight-based dosing
- 3+3 Design

- **MTD/MAD/alternate dose**

MGD019 Monotherapy Cohort Expansion

- **NSCLC**
- **Cervical**
- **MSS CRC**
- **STS**
- **SCCHN**
- **RCC**
- **Other TBD**

Clinical Trial Design

- DLT = dose-limiting toxicity; MAD = maximum administered dose; MTD = maximum tolerated dose; STS = soft tissue sarcoma; MSS CRC = microsatellite stable colorectal cancer; Q3W/Q6W = every 3 or 6 weeks. ClinicalTrials.gov identifier: NCT03761017.
 - Additional patients backfilled at dose levels of interest (3, 6, and 10 mg/kg) after completion of Dose Escalation.
 - Enrollment of select monotherapy expansion cohorts at recommended Phase 2 dose [RP2D] of 6.0 mg/kg are forthcoming.
 - Separate NSCLC cohorts for checkpoint-inhibitor (CPI) naïve and experienced patients.
 - SCCHN cohort of CPI-experienced patients.
 - RCC cohort of CPI-naïve patients.
 - Induction Period (Q3W) for 24 weeks followed by Maintenance Period (Q6W) until study completion. Data cutoff: July 21, 2020.
Baseline Demographics

Dose Escalation

<table>
<thead>
<tr>
<th>Dose Escalation 0.03 – 10 mg/kg (n=43)</th>
</tr>
</thead>
</table>

Median age (range), years

- Median age: 62 (30, 85)

Gender, n (%)

- Male: 21 (48.8)
- Female: 22 (51.2)

ECOG PS, n (%)

- ECOG PS 0: 14 (32.6)
- ECOG PS 1: 29 (67.4)

Median prior lines of therapy (range)

- Median prior lines of therapy: 3 (1, 10)

Prior Checkpoint Inhibitor

- Yes: 17 (39.5)
- No: 26 (60.5)

Tumor Types Treated

- pancreatic, 7
- CRC, 6
- ovarian, 4
- SCLC, 2
- adrenal, 2
- NSCLC, 2
- thymic, 2
- penile, 2
- appendiceal, 2
- eccrine, 1
- leiomyosarcoma, 1
- prostate, 1
- endometrial, 1
- breast, 1
- vaginal, 1
- gastric, 1
- carcinoid, 1
- RCC, 1
- urethral, 1
- melanoma, 1
- fallopian, 1

Data cutoff: July 21, 2020
End of Treatment Disposition

<table>
<thead>
<tr>
<th>Escalation Dose Levels</th>
<th>0.03 – 1.0 mg/kg</th>
<th>3.0 mg/kg</th>
<th>6.0 mg/kg</th>
<th>10.0 mg/kg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients Treated, n</td>
<td>15</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>43</td>
</tr>
<tr>
<td>Response-Evaluable Patients, n (%)</td>
<td>12 (80)</td>
<td>7 (100)</td>
<td>3 (37.5)</td>
<td>8 (61.5)</td>
<td>30 (69.8)</td>
</tr>
<tr>
<td>Median duration of therapy, weeks (min, max)</td>
<td>11.6 (1.3, 60.4)</td>
<td>14.1 (6.0, 34.9)</td>
<td>6.6 (4.3, 24.1)<sup>a</sup></td>
<td>12.1 (3.1, 36.1)</td>
<td>12.0 (1.3, 60.4)</td>
</tr>
<tr>
<td>Active Patients, n (%)</td>
<td>0 (0)</td>
<td>2 (28.6)</td>
<td>5 (62.5)</td>
<td>1 (7.7)</td>
<td>8 (18.6)</td>
</tr>
<tr>
<td>Reasons for discontinuation, n (%)</td>
<td>14 (93.3)</td>
<td>3 (42.9)</td>
<td>3 (37.5)</td>
<td>5 (38.5)</td>
<td>25 (58.1)</td>
</tr>
<tr>
<td>Disease Progression</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5 (38.5)</td>
<td></td>
</tr>
<tr>
<td>Adverse Event</td>
<td>-</td>
<td>1 (14.3)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (7.7)</td>
<td></td>
</tr>
<tr>
<td>Patient/Physician decision/withdrawal</td>
<td>1 (6.7)</td>
<td>1 (14.3)</td>
<td>-</td>
<td>1 (7.7)</td>
<td>3 (7.0)</td>
</tr>
<tr>
<td>Not Reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (7.7)</td>
<td>1 (2.3)</td>
</tr>
</tbody>
</table>

^a Ongoing patients in 6.0 mg/kg cohort (n=5) remain active early in their 1st cycle of treatment. Data cutoff: July 21, 2020.
Pharmacokinetics and Receptor Occupancy

Linear PK (1.0 – 10.0 mg/kg dose range) and Sustained Receptor Occupancy (≥ 1.0 mg/kg Q3W)

First Dose PK

Estimated $t_{1/2}$ = 298 hours (~12 days)

First-dose PK profiles of 0.03 to 10 mg/kg. Symbols and solid lines represent observed data and model fitted median curves, respectively. “Target” refers to published serum trough concentration of pembrolizumab at 2 mg/kg Q3W (23.6 μg/mL) [CDER, KEYTRUDA (pembrolizumab) Clinical Pharmacology and Biopharmaceutics Review(s). 2014]

Receptor (PD-1) Occupancy

MGD019 peripheral PD-1 receptor occupancy for CD4+ T cells collected 21 days after second infusion (green) compared to measured immediately after third infusion (blue).

PD-1 Blockade

MGD019 blocks binding of competing anti-PD-1 mAb (J105) to peripheral CD4+ T cells of patients. Connected symbols represent individual patients before and after (day 8) MGD019 administration.
• Generally well-tolerated at dose levels < 10 mg/kg
• Despite no DLTs, intolerance at 10 mg/kg evident with increased incidence of Grade 3 irAEs, including:
 – Myocarditis (1)
 – Enterocolitis (1)
 – Hepatitis (1)
 – Bullous dermatitis (1)
 – Maculopapular rash (3)
• irAEs recovered with immunosuppression and/or treatment interruption/discontinuation

<table>
<thead>
<tr>
<th>Overall AE Totals</th>
<th>No. (%) of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (N=43)</td>
</tr>
<tr>
<td>AE (irrespective of causality)</td>
<td>42 (97.7)</td>
</tr>
<tr>
<td>Treatment-related AE (TRAE)</td>
<td>34 (79.1)</td>
</tr>
<tr>
<td>SAE (irrespective of causality)</td>
<td>18 (41.9)</td>
</tr>
<tr>
<td>Treatment-related SAE</td>
<td>6 (14.0)</td>
</tr>
<tr>
<td>AE leading to discontinuation</td>
<td>8 (18.6)</td>
</tr>
</tbody>
</table>

a Includes one Grade 4 TRAE (IRR), occurring in setting of baseline pleural effusion. No Grade 5 TRAEs have been reported. Seven of 14 patients experiencing Grade ≥ 3 TRAEs (50%) occurred at 10 mg/kg dose level. b Treatment-related SAEs (n=6) include Gr3 myocarditis, Gr3 enteritis, Gr3 enterocolitis, Gr2 arthralgia, Gr2 pneumonitis, and Gr3 bullous dermatitis (n=1, each), four of which occurred at 10 mg/kg. Data cutoff: July 21, 2020.
MGD019 Dose Escalation: Preliminary Activity

Best % Reduction of Target Lesions
RECIST Evaluable Population (n=30)*

Objective Responses (n=4):
- Microsatellite stable CRC – cPR
- Metastatic type AB thymoma – cPR
- Serous fallopian tube carcinoma\(^b\) – uPR
- mCRPC – cCR
- 10 patients with SD as best response

Preliminary Results\(^d\):
- All Dose Levels: ORR 13.3%; DCR 43.3%
- Doses ≥ 3 mg/kg: ORR 22.2%; DCR 50.0%

* Based on patients with baseline and post-treatment tumor measurements. \(^b\) Previously refractory to anti-PD-L1 therapy in combination with anti-CD47 mAb. \(^c\) PD-L1 expression determined per Agilent PD-L1 (22C3) pharmDx kit; CPS = number of PD-L1 + cells (tumor and immune)/total number of viable tumor cells x 100. \(^d\) Includes the unconfirmed PR. Data cutoff: July 21, 2020
Patient Vignettes

Anti-tumor Activity in Tumors Conventionally Unresponsive to Checkpoint Inhibition

33-year-old female with CRC (3.0 mg/kg)
- MSS disease, low TMB (5 mutations/mB), KRAS mutation
- Clinical course: worsening of celiac disease and Grade 3 enteritis
- Treatment Response: confirmed PR with complete resolution of rib mass and 3 cm subcarinal lymph node (images below); resolution of CEA: 23 (pre-MGD019) to <1 ng/mL
- Off-treatment due to enteritis, with persistent response

61-year-old male with mCRPC (3.0 mg/kg)
- Post 6 prior lines of systemic therapy; disease limited to LNs
- Clinical course: immune-mediated hypothyroidism and transaminitis
- Treatment Response: confirmed CR with complete resolution of disease; resolution of PSA (0.5 ng/mL)
- Remains on MGD019 treatment (35+ weeks)

Screening

Study Day 107

<table>
<thead>
<tr>
<th>ΔPSA (ng/mL)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenge</td>
<td>abiraterone</td>
<td>cabazitaxel</td>
<td>enzalutamide</td>
<td>MGD019 C1D1</td>
<td>uCR</td>
<td>cCR</td>
<td></td>
</tr>
<tr>
<td>docetaxel</td>
<td></td>
</tr>
</tbody>
</table>
Pharmacodynamics of PD-1 and CTLA-4 Blockade

T cell Proliferation (Ki67)

- Day 1
- Day 22

ICOS Upregulation by Dose Level and BoR

- Dose-dependent ICOS upregulation on peripheral CD4 T-cells attributable to CTLA-4 arm based on cross-comparison with other MacroGenics’ PD-1 based molecules.

MGD019 increases fraction of Ki67+ T cells in patients’ PBMCs.
Purpose-designed bispecific checkpoint inhibitor

- Effects independent or coordinate blockade of PD-1 and CTLA-4
 - Enhanced CTLA-4 blockade on dual-expressing TILs vs. PD-1/CTLA-4 mAb combination
 - Maintains uncompromised PD-1 blockade vs. anti-PD1 mAb benchmarks
- GLP toxicology results compare favorably to that of ipilimumab + nivolumab preclinical profile

Encouraging activity in tumors traditionally unresponsive to checkpoint blockade

- Generally well tolerated at doses < 10 mg/kg
- Full peripheral PD-1 blockade evident at doses ≥ 1 mg/kg
- Dose-dependent ICOS upregulation evident in responding patients
- Responding patients with low PD-L1 expression at baseline

Enrollment in select monotherapy expansion cohorts at RP2D of 6.0 mg/kg forthcoming