Efficacy of Margetuximab vs Trastuzumab in Patients With Pretreated ERBB2-Positive Advanced Breast Cancer
A Phase 3 Randomized Clinical Trial

Hope S. Rugo, MD; Seock-Ah Im, MD, PhD; Fatima Cardoso, MD; Javier Cortés, MD, PhD; Giuseppe Curigliano, MD, PhD; Antonino Musolino, MD, PhD, MSc; Mark D. Pegram, MD; Gail S. Wright, MD; Cristina Saura, MD, PhD; Santiago Escrivá-de-Romani, MD; Michelino De Laurentis, MD, PhD; Christelle Levy, MD; Ursa Brown-Glaberman, MD; Jean-Marc Ferrero, MD; Maaike de Boer, MD, PhD; Sung-Bae Kim, MD; Katarína Petráková, MD, PhD; Denise A. Yardley, MD; Orit Freedman, MD, MSc; Erik H. Jakobsen, MD; Bella Kaufman, MD; Rinat Yerushalmi, MD; Peter A. Fasching, MD; Jeffrey L. Nordstrom, PhD; Ezio Bonvini, MD; Scott Koenig, MD, PhD; Sutton Edlich, MS, PA; Shengyan Hong, PhD; Edwin P. Rock, MD; PhD; William J. Gradishar, MD; for the SOPHIA Study Group

IMPORTANCE ERBB2 (formerly HER2)-positive advanced breast cancer (ABC) remains typically incurable with optimal treatment undefined in later lines of therapy. The chimeric antibody margetuximab shares ERBB2 specificity with trastuzumab but incorporates an engineered Fc region to increase immune activation.

OBJECTIVE To compare the clinical efficacy of margetuximab vs trastuzumab, each with chemotherapy, in patients with pretreated ERBB2-positive ABC.

DESIGN, SETTING, AND PARTICIPANTS The SOPHIA phase 3 randomized open-label trial of margetuximab plus chemotherapy vs trastuzumab plus chemotherapy enrolled 536 patients from August 26, 2015, to October 10, 2018, at 166 sites in 17 countries. Eligible patients had disease progression on 2 or more prior anti-ERBB2 therapies and 1 to 3 lines of therapy for metastatic disease. Data were analyzed from February 2019 to October 2019.

INTERVENTIONS Investigators selected chemotherapy before 1:1 randomization to margetuximab, 15 mg/kg, or trastuzumab, 6 mg/kg (loading dose, 8 mg/kg), each in 3-week cycles. Stratification factors were metastatic sites (≤2, >2), lines of therapy (≤2, >2), and chemotherapy choice.

MAIN OUTCOMES AND MEASURES Sequential primary endpoints were progression-free survival (PFS) by central blinded analysis and overall survival (OS). All α was allocated to PFS, followed by OS. Secondary end points were investigator-assessed PFS and objective response rate by central blinded analysis.

RESULTS A total of 536 patients were randomized to receive margetuximab (n = 266) or trastuzumab (n = 270). The median age was 56 (27-86) years; 266 (100%) women were in the margetuximab group, while 267 (98.9%) women were in the trastuzumab group. Groups were balanced. All but 1 patient had received prior pertuzumab, and 489 (91.2%) had received prior ado-trastuzumab emtansine. Margetuximab improved primary PFS over trastuzumab with 24% relative risk reduction (hazard ratio [HR], 0.76; 95% CI, 0.59-0.98; P = .03; median, 5.8 [95% CI, 5.5-7.0] months vs 4.9 [95% CI, 4.2-5.6] months; October 10, 2018). After the second planned interim analysis of 270 deaths, median OS was 21.6 months with margetuximab vs 19.8 months with trastuzumab (HR, 0.89; 95% CI, 0.69-1.13; P = .33; September 10, 2019). And investigator-assessed PFS showed 29% relative risk reduction favoring margetuximab (HR, 0.71; 95% CI, 0.58-0.86; P < .001; median, 5.7 vs 4.4 months; September 10, 2019). Margetuximab improved objective response rate over trastuzumab: 22% vs 16% (P = .06; October 10, 2018), and 25% vs 14% (P < .001; September 10, 2019). Incidence of infusion-related reactions, mostly in cycle 1, was higher with margetuximab (35 [13.3%] vs 9 [3.4%]); otherwise, safety was comparable.

CONCLUSIONS AND RELEVANCE In this phase 3 randomized clinical trial, margetuximab plus chemotherapy had acceptable safety and a statistically significant improvement in PFS compared with trastuzumab plus chemotherapy in ERBB2-positive ABC after progression on 2 or more prior anti-ERBB2 therapies. Final OS analysis is expected in 2021.

TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02492711

JAMA Oncol. doi:10.1001/jamaoncol.2020.7932
Published online January 22, 2021.

Author Affiliations: Author affiliations are listed at the end of this article.

Group Information: The SOPHIA Study Group members appear at the end of the article.

Corresponding Author: Hope S. Rugo, MD, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, 1825 Fourth St, 3rd Floor, PO Box 1710, San Francisco, CA 94158 (hope.rugo@ucsf.edu).
A
ddition of ERBB2 (formerly HER2)-targeting monoclonal antibodies to chemotherapy improves progression-free survival (PFS) and overall survival (OS) in patients with ERBB2-positive advanced breast cancer (ABC).1-4 Generally, patients with ERBB2-positive metastatic breast cancer (BC) receive multiple lines of therapy, yet with rare exceptions, ERBB2-positive metastatic BC remains incurable.5,6

Margetuximab is a chimeric, Fc-engineered, immune-activating anti-ERBB2 immunoglobulin G1 (IgG1) monoclonal antibody that shares epitope specificity and Fc-independent antiproliferative effects with trastuzumab. Fc engineering of margetuximab alters 5 amino acids from wild-type IgG1 to increase affinity for activating Fcy receptor (FcγRI) CD16A (FcγRIIIa) and to decrease affinity for inhibitory FcγR CD32B (FcγRIIb).6,7 These effects are proposed to increase activation of innate and adaptive anti-ERBB2 immune responses, relative to trastuzumab.

Three FcγRs (CD16A, CD32A, and CD32B) expressed on immune effector cells regulate cellular activation by antibodies.8 CD16A can trigger antibody-dependent cellular cytotoxicity (ADCC) by innate immune cells.9,10 Two CD16A polymorphisms at amino acid 158 bind IgG1 with higher (valine [V]) or lower (phenylalanine [F]) affinity.11 Clinical benefit of therapeutic antibodies, including trastuzumab,11-15 appears greater for patients with the high-affinity VV genotype compared with the lower-affinity FF genotype (CD16A-158F carriers).11,12 A key feature of margetuximab’s engineered Fc domain is increased binding to all CD16A-158 V/F variants, relative to wild-type IgG1.

In a phase 1 study18 of margetuximab monotherapy in 66 patients with pretreated ERBB2-positive carcinomas, 4 of 24 (17%) evaluable patients with ABC had a confirmed partial response. Three patients continued margetuximab monotherapy for 4 or more years.19 Here we report initial results of a phase 3 randomized clinical trial of margetuximab vs trastuzumab, each combined with single-agent chemotherapy, in pretreated patients with ERBB2-positive ABC. In addition, we present an exploratory analysis of PFS and OS by FcγR genotype.

Methods

Study Design and Participants

This international, randomized, open-label, phase 3 study (SOPHIA; MacroGenics study protocol No. CP-MGAH22-04) enrolled patients at 166 centers in 17 countries. Eligible patients were aged 18 years or older with confirmed ERBB2-positive ABC by local or optional central testing of the most recent biopsy, following 2013 American Society of Clinical Oncology testing recommendations.20 Patients must have had progressive disease after 2 or more lines of prior ERBB2-targeted therapy, including pertuzumab, and 1 to 3 lines of nonhormonal metastatic BC therapy. Prior brain metastases were allowed if treated and stable. Trial conduct was in accordance with Good Clinical Practice guidelines and the Declaration of Helsinki. An independent ethics committee approved the protocol at each participating site. All patients provided written informed consent. The trial protocol and statistical analysis plan are available online (Supplement 1). This study followed the Consolidated Standards of Reporting Trials (CONSORT) reporting guideline.

Randomization and Masking

Investigators chose 1 of 4 chemotherapies (capecitabine, eribulin, gemcitabine, or vinorelbine) for each eligible patient before 1:1 randomization by a permuted-blocks procedure. Stratification factors were metastatic sites (≤2, >2), lines of therapy for metastatic disease (≤2, >2), and chemotherapy choice. The trial was open label for patients and investigators but sponsor blinded with central blinded analysis (CBA) of PFS to prevent observer bias.

Procedures

Margetuximab was given intravenously at 15 mg/kg over 120 minutes on day 1 of each 21-day cycle. Trastuzumab was given intravenously at 6 mg/kg (over 30-90 minutes) on day 1 of each 21-day cycle after a loading dose of 8 mg/kg (over 90 minutes). Capecitabine was given orally at 1000 mg/m2 twice daily for 14 days followed by 7 days off. Eribulin, gemcitabine, and vinorelbine were given intravenously before antibody infusion at 1.4 mg/m2, 1000 mg/m2, and 25 to 30 mg/m2, respectively, on days 1 and 8 of each cycle. Margetuximab premedication was recommended, if not already given with chemotherapy: standard doses of acetaminophen or ibuprofen, diphenhydramine, ranitidine, and dexamethasone, or equivalents. Disease assessment was performed at baseline, every 6 weeks for the first 24 weeks of therapy, and then every 12 weeks until disease progression, adverse event (AE) necessitating discontinuation, consent withdrawal, or death. Safety was assessed at each visit, including AEs from study therapy initiation through the end-of-treatment visit, or 28 days after last administration of the study drug. Investigators assessed both event severity, using Common Terminology Criteria for Adverse Events, version 4.03, and causality. Left ventricular ejection fraction (LVEF) was monitored every 6 weeks.

Key Points

Question Does margetuximab plus chemotherapy prolong progression-free survival and/or overall survival of patients with pretreated ERBB2-positive advanced breast cancer, relative to trastuzumab plus chemotherapy?

Findings In the SOPHIA phase 3 randomized clinical trial of 536 patients with pretreated ERBB2-positive advanced breast cancer, margetuximab plus chemotherapy generated a statistically significant 24% relative risk reduction in the hazard of progression vs trastuzumab plus chemotherapy. After the second planned interim analysis of 270 deaths, median OS was 21.6 months with margetuximab vs 19.8 months with trastuzumab, and final analysis of OS will be reported subsequently.

Meaning This trial demonstrates a head-to-head advantage of margetuximab (an Fc-engineered ERBB2-targeted antibody) compared with trastuzumab in a pretreated ERBB2-positive advanced breast cancer population.
Efficacy of Margetuximab vs Trastuzumab in Pretreated ERBB2-Positive Advanced Breast Cancer

Original Investigation Research

Published online January 22, 2021

Kaplan-Meier method was used to estimate median PFS, OS, and 95% CIs for each treatment group. The stratified log-rank test was used to compare time-to-event end points between groups. A stratified Cox proportional hazards model with treatment as the only covariate was used to estimate PFS and OS. The O’Brien-Fleming type Lan-DeMets α-spending function was applied for allocation to each interim OS analysis.

Results

Study Population
From July 2015 through October 2018, a total of 536 patients were enrolled at 166 centers in 17 countries and randomized to receive margetuximab plus chemotherapy (margetuximab group, n = 266) or trastuzumab plus chemotherapy (trastuzumab group, n = 270; Figure 1). The median age was 56 (27-86) years (55.0 [29-83] years for patients in the margetuximab group and 56.0 [27-86] years in the trastuzumab group); 266 (100%) women were in the margetuximab group, while 267 (98.9%) women were in the trastuzumab group.

Baseline characteristics were balanced across groups (Table 1). All patients had received prior trastuzumab; all but 1 had received prior pertuzumab, and 489 (91.2%) had received prior ado-trastuzumab emtansine. One-third of patients in both groups received 3 or more prior therapies for metastatic BC (margetuximab, 92 of 266 [34.6%]; trastuzumab, 87 of 270 [32.2%]).

Efficacy
Primary PFS analysis was triggered by last randomization (October 10, 2018), after 265 PFS events. On that date, 79 (30%) patients were censored at the last tumor assessment date for PFS and at the last time known to be alive for OS. The ORR and CBR were assessed in randomized patients with baseline measurable disease (response-evaluable population). For ORR analysis, if a patient’s response was missing, the patient was classified as not available. Safety and antidrug antibodies were assessed in randomized patients after any study treatment (safety population).

Kaplan-Meier methods were used to estimate median PFS, OS, and 95% CIs for each treatment group. The stratified log-rank test was used to compare time-to-event end points between groups. A stratified Cox proportional hazards model, with treatment as the only covariate, was used to estimate PFS and OS HRs and 95% CIs.

Prespecified PFS and OS subgroup analyses included chemotherapy choice, metastatic sites, lines of prior metastatic therapy, prior ado-trastuzumab emtansine use, hormone receptor status, ERBB2 status, Eastern Cooperative Oncology Group performance status, region, age, and race, as well as FCGR3A (FcγRIIa/CD16A), FCGR2A (FcγRIA/CD32A), and FCGR2B (FcγRIIB/CD32B) genotype. The HRs and 95% CIs for PFS in each subgroup were assessed using an unstratified Cox proportional hazards model with treatment as the only covariate.

If the primary PFS and OS were each positive, then secondary PFS and ORR end points were to be tested using the Hochberg step-up procedure for multiplicity adjustment. Investigator-assessed PFS was analyzed using the same methods as the primary PFS end point. The ORR was compared between groups by the stratified Mantel-Haenszel test. Data were analyzed from February 2019 to October 2019. Analyses were performed using SAS, version 9.4 (SAS Institute).

Outcomes
Primary end points were PFS by CBA, with the α entirely allocated to PFS, and OS. The PFS was defined as time from randomization to disease progression or death from any cause. Secondary end points included investigator-assessed PFS and CBA-assessed objective response rate (ORR). The PFS and ORR were assessed according to Response Evaluation Criteria in Solid Tumors, version 1.1. Additional end points included safety, clinical benefit rate (CBR; ORR plus stable disease lasting at least 6 months), investigator-assessed ORR, response duration, antidrug antibodies, and exploratory evaluation of FcγR allelic variation on efficacy.

Statistical Analysis
For 90% power to detect median PFS improvement from 4 to 6 months (hazard ratio [HR], 0.67) at a 2-sided .05 significance level, 257 PFS events were needed. Primary PFS by CBA occurred after 257 PFS events or all patients were randomized, whichever occurred last. The OS was time from randomization to death from any cause and was to be assessed only if PFS was positive. For 80% power to detect a median OS improvement from 12 to 16 months (HR, 0.75) at a 2-sided .05 significance level, 385 OS events were needed. Three OS analyses were planned: first interim coincident with primary PFS analysis, second interim after 270 deaths, and final analysis after 385 events. All α was allocated to PFS, tested at a 2-sided .05 significance level. If PFS passed the test, then OS would be tested at the same significance level of 2-sided .05. The O’Brien-Fleming type Lan-DeMets α-spending function was applied for allocation to each interim OS analysis.

The PFS and OS were assessed in the randomized, intention-to-treat population. Patients were censored at the last tumor assessment date for PFS and at the last time known to be alive for OS. The ORR and CBR were assessed in randomized patients with baseline measurable disease (response-evaluable population). For ORR analysis, if a patient’s response was missing, the patient was classified as not available. Safety and antidrug antibodies were assessed in randomized patients after any study treatment (safety population).

Kaplan-Meier methods were used to estimate median PFS, OS, and 95% CIs for each treatment group. The stratified log-rank test was used to compare time-to-event end points between groups. A stratified Cox proportional hazards model, with treatment as the only covariate, was used to estimate PFS and OS HRs and 95% CIs.

Prespecified PFS and OS subgroup analyses included chemotherapy choice, metastatic sites, lines of prior metastatic therapy, prior ado-trastuzumab emtansine use, hormone receptor status, ERBB2 status, Eastern Cooperative Oncology Group performance status, region, age, and race, as well as FCGR3A (FcγRIIa/CD16A), FCGR2A (FcγRIA/CD32A), and FCGR2B (FcγRIIB/CD32B) genotype. The HRs and 95% CIs for PFS in each subgroup were assessed using an unstratified Cox proportional hazards model with treatment as the only covariate.

If the primary PFS and OS were each positive, then secondary PFS and ORR end points were to be tested using the Hochberg step-up procedure for multiplicity adjustment. Investigator-assessed PFS was analyzed using the same methods as the primary PFS end point. The ORR was compared between groups by the stratified Mantel-Haenszel test. Data were analyzed from February 2019 to October 2019. Analyses were performed using SAS, version 9.4 (SAS Institute).

Outcomes
Primary end points were PFS by CBA, with the α entirely allocated to PFS, and OS. The PFS was defined as time from randomization to disease progression or death from any cause. Secondary end points included investigator-assessed PFS and CBA-assessed objective response rate (ORR). The PFS and ORR were assessed according to Response Evaluation Criteria in Solid Tumors, version 1.1. Additional end points included safety, clinical benefit rate (CBR; ORR plus stable disease lasting at least 6 months), investigator-assessed ORR, response duration, antidrug antibodies, and exploratory evaluation of FcγR allelic variation on efficacy.

Statistical Analysis
For 90% power to detect median PFS improvement from 4 to 6 months (hazard ratio [HR], 0.67) at a 2-sided .05 significance level, 257 PFS events were needed. Primary PFS by CBA occurred after 257 PFS events or all patients were randomized, whichever occurred last. The OS was time from randomization to death from any cause and was to be assessed only if PFS was positive. For 80% power to detect a median OS improvement from 12 to 16 months (HR, 0.75) at a 2-sided .05 significance level, 385 OS events were needed. Three OS analyses were planned: first interim coincident with primary PFS analysis, second interim after 270 deaths, and final analysis after 385 events. All α was allocated to PFS, tested at a 2-sided .05 significance level. If PFS passed the test, then OS would be tested at the same significance level of 2-sided .05. The O’Brien-Fleming type Lan-DeMets α-spending function was applied for allocation to each interim OS analysis.

The PFS and OS were assessed in the randomized, intention-to-treat population. Patients were censored at the last tumor assessment date for PFS and at the last time known to be alive for OS. The ORR and CBR were assessed in randomized patients with baseline measurable disease (response-evaluable population). For ORR analysis, if a patient’s response was missing, the patient was classified as not available. Safety and antidrug antibodies were assessed in randomized patients after any study treatment (safety population).

Kaplan-Meier methods were used to estimate median PFS, OS, and 95% CIs for each treatment group. The stratified log-rank test was used to compare time-to-event end points between groups. A stratified Cox proportional hazards model, with treatment as the only covariate, was used to estimate PFS and OS HRs and 95% CIs.

Prespecified PFS and OS subgroup analyses included chemotherapy choice, metastatic sites, lines of prior metastatic therapy, prior ado-trastuzumab emtansine use, hormone receptor status, ERBB2 status, Eastern Cooperative Oncology Group performance status, region, age, and race, as well as FCGR3A (FcγRIIa/CD16A), FCGR2A (FcγRIA/CD32A), and FCGR2B (FcγRIIB/CD32B) genotype. The HRs and 95% CIs for PFS in each subgroup were assessed using an unstratified Cox proportional hazards model with treatment as the only covariate.

If the primary PFS and OS were each positive, then secondary PFS and ORR end points were to be tested using the Hochberg step-up procedure for multiplicity adjustment. Investigator-assessed PFS was analyzed using the same methods as the primary PFS end point. The ORR was compared between groups by the stratified Mantel-Haenszel test. Data were analyzed from February 2019 to October 2019. Analyses were performed using SAS, version 9.4 (SAS Institute).
The OS analysis after 270 deaths (70% of 385 final required events) occurred on September 10, 2019, after 131 (49.2%) and 139 (51.5%) OS events in the margetuximab and trastuzumab groups, respectively. Median OS was 21.6 months with margetuximab and 19.8 months with trastuzumab (HR, 0.89; 95% CI, 0.69-1.13; \(P = .33 \); Figure 3). The stopping threshold was not reached; final OS analysis will occur after 385 deaths (anticipated in 2021).

Among 524 response-evaluable patients, margetuximab recipients had higher blinded ORR (22% vs 16%; \(P = .06 \)) and CBR (37% vs 25%; \(P = .003 \)) than trastuzumab recipients (eTable 1 in Supplement 2). These rates were similar at the September 2019 cutoff when investigator-assessed ORR and CBR were 25% vs 14% (\(P < .001 \)) and 48% vs 36% (\(P = .003 \)), respectively (eTable 1 in Supplement 2). Median response duration was similar between treatment groups: 6.1 vs 6.0 months (October 10, 2018, CBA) and 6.9 vs 7.0 months (September 10, 2019, investigator assessed).

Prespecified exploratory subgroup analyses of primary PFS (October 10, 2018, cutoff) and second interim OS (September 10, 2019, cutoff) by CD16A genotype are shown in eFigures 1 and 2 in Supplement 2, respectively. Genotyping was available for 506 patients (94%). Study groups were in Hardy-Weinberg equilibrium for all 3 FCGR genotypes (eTable 2 in Supplement 2). Baseline characteristics of patients assigned to margetuximab vs trastuzumab by FcγR genotype are shown in eTable 3 in Supplement 2. The interim OS per treatment group by CD16A genotype is shown in eFigure 3 in Supplement 2. Efficacy outcomes by CD32A and CD32B are shown in eFigure 4 and eFigure 5 in Supplement 2.

Safety
As of April 10, 2019, which provided 6 additional months of safety follow-up after the primary PFS analysis, the safety population included 264 margetuximab and 266 trastuzumab recipients. Common AEs (≥20% of patients), regardless of causality, included fatigue, nausea, diarrhea, and neutropenia in both groups (Table 2), as well as vomiting (margetuximab group) and anemia (trastuzumab group). Grade 3 or greater AEs in at least 5% of patients included neutropenia and anemia in both groups, as well as fatigue in the margetuximab group and febrile neutropenia in the trastuzumab group. Discontinuations owing to AEs were similar (margetuximab, 8 of 266 [3.0%]; trastuzumab, 7 of 270 [2.6%]; eTable 4 in Supplement 2). Adverse events leading to death were reported in 5 patients (margetuximab, n = 3 [1.1%]; trastuzumab, n = 2 [0.8%]; eTable 4 in Supplement 2); none were considered treatment related.
Adverse events of special interest included infusion-related reactions (IRRs) and left ventricular (LV) dysfunction. All-grade IRRs were more common with margetuximab than with trastuzumab (35 [13.3%] vs 9 [3.4%], respectively; Table 2). Most IRRs were grade 1 or 2, occurred on cycle 1, day 1, and resolved within 24 hours. Grade 3 IRRs on cycle 1, day 1 were reported in 4 (1.5%) margetuximab-treated patients. Of these 4 patients, 2 (0.8%) continued therapy for 5 or more cycles and 2 (0.8%) discontinued owing to IRRs (eTable 4 in Supplement 2). No trastuzumab recipients had grade 3 IRRs. Adverse events of LV dysfunction occurred in 7 patients (3%) in each treatment group (eTable 4 in Supplement 2). Grade 3 LV dysfunction AEs were observed in 3 margetuximab recipients (1.1%) and 1 trastuzumab recipient (0.4%). Monitoring of LVEF led to dose delay or discontinuation in 4 margetuximab-treated (1.5%) vs 6 trastuzumab-treated patients (2.3%). All LVEF reductions detected by monitoring were asymptomatic. Reductions in LVEF were reversible for all patients with complete follow-up.

Discussion

The phase 3 SOPHIA trial compared margetuximab, a novel chimeric Fc-engineered anti-ERBB2 antibody, to trastuzumab, each with chemotherapy, in patients with pretreated ERBB2-positive ABC. This randomized clinical trial was positive for its PFS primary endpoint. Margetuximab plus chemotherapy led to an independently assessed PFS benefit vs trastuzumab plus chemotherapy, with a 24% relative risk reduction. Investigator-assessed PFS complemented primary blinded PFS with a 29% relative risk reduction. No conclusion can be drawn at this time about OS based on the 2 OS interim analyses conducted after 40% and 70% of target OS events (immature data); final analysis of the effect of margetuximab vs trastuzumab on survival will occur after 385 deaths (anticipated in 2021).

Margetuximab plus chemotherapy had acceptable safety, comparable with control trastuzumab plus chemotherapy. Although IRRs were increased with margetuximab, almost all occurred during the first infusion only, and the observed margetuximab IRR rate aligns with that in published literature on
Figure 2. Progression-Free Survival (PFS) in the Intention-to-Treat Population

A. Kaplan-Meier estimates of PFS in the intention-to-treat population by central blinded analysis (CBA), based on the October 2018 cutoff. B. Kaplan-Meier estimates of PFS in the intention-to-treat population by investigator assessment, based on the October 2018 cutoff. C. Kaplan-Meier estimates of PFS in the intention-to-treat population by investigator assessment, based on the September 2019 cutoff. The dashed line indicates 50% (median PFS), plus signs, censored data. HR indicates hazard ratio.

A. PFS analysis was triggered by last randomization on October 10, 2018, after 265 PFS events occurred.

B. PFS analysis performed as of September 10, 2019, after 430 PFS events occurred.
trastuzumab first exposure (16%).21 In a nonrandomized infusion safety study, margetuximab was administered over 30 minutes from cycle 2 onward and appeared well tolerated with no increase in IRIR risk, supporting 30-minute margetuximab infusions after cycle 1.22 There was no increase in cardiac toxic effects with margetuximab compared with trastuzumab.

The SOPHIA study also tested the hypothesis that altering Fc–FcγR interactions can drive clinical benefit. Trastuzumab triggers ADCC23 via activation of FcγRIIIa (CD16A).8 Associations between efficacy and CD16A polymorphism in trastuzumab-treated patients with early and advanced BC suggest lower immune activation in CD16A-158F allele carriers compared with VV homozygotes.10-12,14,24 Diminished clinical response to trastuzumab for these CD16A-158F carriers suggests these patients may benefit from an antibody with enhanced Fc-dependent immune activation.11,12,24 Margetuximab Fc engineering increases affinity for both CD16A allotypes, enhances ADCC potency over trastuzumab with effector cells of all CD16A genotypes (FF, FV, VV), albeit proportionally more for CD16A-158F carriers under certain conditions, and boosts activity against ERBB2-positive BC xenografts in mice transgenic for human CD16A-158F.8,25 Exploratory PFS analysis by CD16A genotype suggested that presence of a CD16A-158F allele may predict margetuximab benefit over trastuzumab. Early OS results showed a similar pattern. Conversely, there was no margetuximab benefit in the smaller CD16A-158VV group in this study of heavily pretreated patients. There is no clear biological explanation for the observation that margetuximab provided no clinical benefit in CD16A-158VV homozygotes compared with trastuzumab, although there was an imbalance in poor prognostic features between the 2 groups.

Increasing evidence implicates adaptive immunity in the clinical activity of anti-ERBB2 monoclonal antibodies.26 ERBB2-specific T-cell and antibody responses were observed in 50% to 78% and 42% to 69%, respectively, of trastuzumab-treated patients with ERBB2-positive BC.10,24,26-30 Correspondingly, increases in ERBB2-specific T-cell and antibody responses were observed in 98% and 94%, respectively, of pretreated phase 1 study patients receiving margetuximab monotherapy.27 This trial demonstrates a small but statistically significant PFS benefit of margetuximab plus chemotherapy over trastuzumab plus chemotherapy in patients with ERBB2-positive ABC who progressed after treatment with trastuzumab, pertuzumab, and ado-trastuzumab emtansine.1,2,4,32 Alternatives for this patient population include neratinib, tucatinib, and trastuzumab deruxtecan, which have emerged as active regimens, albeit with different levels of effectiveness, and all with notable toxic effects. Margetuximab may have a role for patients in this setting who are unable, or unwilling, to tolerate toxic effects of these novel therapies.

Limitations

Limitations of this trial include that the primary end point did not allocate α to the CD16A analysis and that patients with active brain metastases were not included. An ongoing neoadjuvant investigator-sponsored trial is comparing margetuximab vs trastuzumab in patients with the low-affinity CD16A genotype (the MARGeximab Or Trastuzumab trial, known as MARGOT; NCT04425018). Immune-mediated therapies, such as margetuximab, may be more effective in the earlier disease setting where the immune system is relatively intact.

Conclusions

The chimeric antibody margetuximab shares ERBB2 specificity with trastuzumab but incorporates an engineered Fc region to optimize immune activation. This phase 3 randomized clinical trial demonstrates improvement in PFS of margetuximab in combination with chemotherapy vs trastuzumab plus chemotherapy in patients with pretreated ERBB2-positive ABC, which remains typically incurable.
<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Margetuximab plus chemotherapy (n = 264)</th>
<th>Trastuzumab plus chemotherapy (n = 266)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All grade<sup>a</sup></td>
<td>Grade ≥3<sup>b</sup></td>
</tr>
<tr>
<td>Nonhematologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue<sup>c</sup></td>
<td>111 (42.0)</td>
<td>13 (4.9)</td>
</tr>
<tr>
<td>Nausea</td>
<td>86 (32.6)</td>
<td>3 (1.1)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>66 (25.0)</td>
<td>6 (2.3)</td>
</tr>
<tr>
<td>Constipation</td>
<td>51 (19.3)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Vomiting<sup>d</sup></td>
<td>54 (20.5)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>50 (18.9)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Headache</td>
<td>47 (17.8)</td>
<td>0</td>
</tr>
<tr>
<td>Alopecia</td>
<td>47 (17.8)</td>
<td>0</td>
</tr>
<tr>
<td>Asthenia</td>
<td>47 (17.8)</td>
<td>6 (2.3)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>38 (14.4)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Infusion-related reaction<sup>e</sup><sup,f</sup></td>
<td>35 (13.3)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td>Cough</td>
<td>37 (14.0)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>PPE syndrome</td>
<td>33 (12.5)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>34 (12.9)</td>
<td>3 (1.1)</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>30 (11.4)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>27 (10.2)</td>
<td>0</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>27 (10.2)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>26 (9.8)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>26 (9.8)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Mucosal inflammation<sup>g</sup></td>
<td>26 (9.8)</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>25 (9.5)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>25 (9.5)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>16 (6.1)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>14 (5.3)</td>
<td>5 (1.9)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>9 (3.4)</td>
<td>5 (1.9)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>8 (3.0)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Syncope</td>
<td>4 (1.5)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td>Hematologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia<sup>h</sup></td>
<td>75 (28.4)</td>
<td>52 (19.7)</td>
</tr>
<tr>
<td>Anemia<sup>i</sup></td>
<td>49 (18.6)</td>
<td>13 (4.9)</td>
</tr>
<tr>
<td>Neutrophil count decreased</td>
<td>33 (12.5)</td>
<td>23 (8.7)</td>
</tr>
<tr>
<td>ALT increased</td>
<td>24 (9.1)</td>
<td>5 (1.9)</td>
</tr>
<tr>
<td>AST increased</td>
<td>22 (8.3)</td>
<td>7 (2.7)</td>
</tr>
<tr>
<td>WBC decreased</td>
<td>19 (7.2)</td>
<td>5 (1.9)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>14 (5.3)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td>Febrile neutropenia<sup>j</sup></td>
<td>8 (3.0)</td>
<td>8 (3.0)</td>
</tr>
</tbody>
</table>

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; PPE, palmar-plantar erythrodysesthesia; WBC, white blood cell.

^a All-grade adverse events with ≥10% incidence in either treatment group.

^b Grade ≥3 with an incidence of ≥2% in either treatment group.

^c Exact test P value for nonprespecified comparison of all-grade fatigue between treatment groups (42.0% vs 35.3%); P = .13. Exact test P value for nonprespecified comparison of grade ≥3 fatigue between treatment groups (4.9% vs 3.0%); P = .28.

^d Exact test P value for nonprespecified comparison of all-grade vomiting between treatment groups (20.5% vs 14.3%); P = .07.

^e Infusion-related reactions include hypersensitivity/anaphylactic/anaphylactoid reactions.

^f Exact test P value for nonprespecified comparison of all-grade infusion-related reaction between treatment groups (13.3% vs 3.4%); P < .001.

^g Exact test P value for nonprespecified comparison of all-grade mucosal inflammation between treatment groups (9.8% vs 3.0%); P = .001.

^h Exact test P value for nonprespecified comparison of all-grade neutropenia between treatment groups (28.4% vs 20.7%); P = .04. Exact test P value for nonprespecified comparison of grade ≥3 neutropenia between treatment groups (19.7% vs 12.4%); P = .02.

ⁱ Exact test P value for nonprespecified comparison of all grade anemia between treatment groups (18.6% vs 23.3%); P = .20.

^j Exact test P value for nonprespecified comparison of grade ≥3 febrile neutropenia between treatment groups (3.0% vs 4.9%); P = .37.
Efficacy of Margetuximab vs Trastuzumab in Pretreated ERBB2-Positive Advanced Breast Cancer

ARTICLE INFORMATION
Accepted for Publication: November 18, 2020.
Published Online: January 22, 2021.
Open Access: This is an open access article distributed under the terms of the CC-BY-NC-ND License. © 2021 Hugo HS et al. JAMA Oncology.

Author Affiliations: University of California San Francisco Helen Diller Family Comprehensive Cancer Center (Rugo); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea (Im); Charmatz, Clinical Center/Champlain adult Foundation, Breast Unit, Lisbon, Portugal (Cardoso); I0B Institute of Oncology, Quironsalud Group, Madrid and Barcelona, Spain (Cortés); Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain (Cortés); European Institute of Oncology, IRCCS, Division of Early Drug Development, University of Milano, Milan, Italy (Curigliano); Department of Medicine and Surgery, University of Parma, Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy (Musolino); Stanford Comprehensive Cancer Institute, Stanford University School of Medicine, Stanford, California (Pegram); Florida Cancer Specialists & Research Institute, New Port Richey (Wright); Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Medical Oncology Service, Barcelona, Spain (Saura, Escrivá-de-Romani); Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori “Fondazione Pascale”, Naples, Italy (De Laurentiis); Centre François Baclesse, Institut Nordman du Sein, Caen, France (Levy); Division of Hematology/Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque (Brown-Glaberman); Centre Antoine Lacassagne, Department of Medical Oncology, University Côte d’Azur, Nice, France (Ferrero); Maastricht University Medical Center, Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology, Maastricht, the Netherlands (de Boer); Department of Oncology, Asan Medical Center, Seoul, Korea (Kim); Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic (Pétráková); Sarah Cannon Research Institute, Tennessee Oncology PLLC, Nashville (Yardley); RS McLaughlin Durham Regional Cancer Centre, Lakeridge Health, Oshawa, Ontario, Canada (Freedman); Department of Oncology, Veje Hospital, Veje, Denmark (Jakobsen); Chaim Sheba Medical Center, Breast Oncology Institute, Ramat Gan, Israel (Kaufman); Davidoff Cancer Center, Rabin Medical Center, Bellinson Hospital, Petah Tikva, Israel (Sarid); Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Department of Gynecology and Obstetrics, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany (Ferrero), MacroGenics, Inc., Rockville, Maryland (Nordstrom, Bonvini, Koenig, Edlich, Hong, Rock); Division of Hematology/Oncology, Northwestern University, Chicago, Illinois (Gradishar).

Author Contributions: Drs Rugo and Rock had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Rugo, Im, Cardoso, Cortés, Curigliano, Pegram, Jakobsen, Koenig. Acquisition, analysis, or interpretation of data: Rugo, Im, Cardoso, Cortés, Curigliano, Musolino, Pegram, Wright, Saura, Escrivá-de-Romani, De Laurentis, Levy, Brown-Glaberman, Ferrero, de Boer, Kim, Petráková, Yardley, Freedman, Kaufman, Yerushalmi, Fasching, Nordstrom, Bonvini, Koenig, Edlich, Hong, Rock, Gradishar. Drafting of the manuscript: Rugo, Curigliano, Musolino, Pegram, Wright, Saura, Escrivá-de-Romani, De Laurentis, Levy, Brown-Glaberman, Ferrero, de Boer, Kim, Petráková, Yardley, Freedman, Jakobsen, Kaufman, Fasching, Nordstrom, Bonvini, Koenig, Edlich, Hong, Rock, Gradishar. Critical revision of the manuscript for important intellectual content: Rugo, Im, Cardoso, Cortés, Curigliano, Musolino, Pegram, Wright, Saura, Escrivá-de-Romani, De Laurentis, Levy, Brown-Glaberman, Ferrero, de Boer, Kim, Petráková, Yardley, Freedman, Jakobsen, Kaufman, Fasching, Nordstrom, Bonvini, Koenig, Edlich, Hong, Rock, Gradishar. Statistical analysis: Curigliano, Saura, Hong. Obtained funding: Koenig. Administrative, technical, or material support: Rugo, Im, Curigliano, Musolino, Petráková, Yardley, Kaufman, Fasching, Edlich, Rock, Gradishar. Supervision: Curigliano, Musolino, Wright, Saura, Freedman, Koenig, Rock.

Conflict of Interest Disclosures: Dr Rugo reported receiving grants from MacroGenics during the conduct of the study; and grants from Roche, Pfizer, Novartis, Lilly, Merck, Seattle Genetics, Odonate Therapeutics, Eisai, Sermonix Pharmaceuticals, Genentech, Lilly, and Merck Sharp & Dohme outside the submitted work. Dr Im reported receiving grants from Daewoong Pharmaceutical, grants and personal fees from AstraZeneca, Pfizer, and Roche; and personal fees from Amgen, Eisai, Hamm Pharma, Novartis, Lilly, and Merck Sharp & Dohme outside the submitted work. Dr Cardoso reported receiving personal fees from Roche, Celgene, AstraZeneca, Cellestia, Biothera Pharmaceuticals, Merus, Seattle Genetics, Daiichi Sankyo, Erytech Pharma, Athenex, Polyphor, Lilly, Servier, Merck Sharp & Dohme, GlaxoSmithKline, Leuko, Biosis Technologies, Clovis Oncology, Boehringer Ingelheim, Novartis, Eisai, Pfizer, and Samsung Bioepis, honoraria from Samsung Bioepis, Pfizer, Eisai, Novartis, Roche, Celgene, Daiichi Sankyo, Lilly, Merck Sharp & Dohme; serving on advisory boards for Boehringer Ingelheim, Clovis Oncology, Biocon, Leuko, GlaxoSmithKline, Merck Sharp & Dohme, Servier, Lilly, Polyphor, Athenex, Erytech, Daiichi Sankyo, Seattle Genetics, Merus, Biothera, Cellestia, AstraZeneca, Celgene, and Roche; and owning stock from MedSIT outside the submitted work; and travel, accommodations, and expenses from Roche, Novartis, Eisai, Pfizer, and Daiichi Sankyo. Dr Curigliano reported receiving travel grants from Roche; serving on advisory boards for Pfizer, Seattle Genetics, Novartis, AstraZeneca, Lilly, Merck Sharp & Dohme, Daiichi Sankyo, Genomic Health, and Ellipsis; and serving as a steering committee member for Bristol Myers Squibb outside the submitted work. Dr Musolino reported receiving personal fees from MacroGenics during the conduct of the study; and grants and personal fees from Roche and Eisai and personal fees from Novartis and Lilly outside the submitted work. Dr Pegram reported receiving personal fees from MacroGenics and Roche during the conduct of the study. Dr Wright reported receiving payment to Sarah Cannon Research Institute for conduct of clinical trial from MacroGenics during the conduct of the study; and payment to Sarah Cannon Research Institute for conduct of clinical trial from AbbVie, Incyte, Genentech, Novartis, Lilly, Janssen, Astellas, Celgene, AstraZeneca, Bristol Myers Squibb, Boehringer Ingelheim, GI Therapeutics, Medivation, Menimack, Pfizer, Tesaro, and Odonate Therapeutics outside the submitted work. Dr Saura reported receiving personal fees from AstraZeneca, Celgene, Daiichi Sankyo, Eisai, F. Hoffmann-La Roche Ltd, Genomic Health, Merck, Sharp and Dohme España SA, Novartis, Odonate Therapeutics, Pfizer, Philips HealthWorks, Pierre Fabre, priME Oncology, Puma, Synthony, and Sanofi Aventis outside the submitted work. Dr Escrivá-de-Romani reported receiving grants from MacroGenics during the conduct of the study; and grants from Synthony and Zymeworks, grants, personal fees, and nonfinancial support from Roche; personal fees and nonfinancial support from Pierre Fabre; personal fees from Eisai, Kyowa Kirin, and Esteve; and nonfinancial support from Daiichi Sankyo outside the submitted work. Dr De Laurentis reported receiving grants from MacroGenics during the conduct of the study; and grants from Daiichi Sankyo; grants and personal fees from Roche, Novartis, Pfizer, Eli Lilly, Pierre Fabre, and AstraZeneca; personal fees from Celgene, Eisai, Genomic Health, and Amgen outside the submitted work. Dr Brown-Glaberman reported receiving personal fees from Novartis, Eisai, Biogen, and Seattle Genetics outside the submitted work. Dr de Boer reported receiving grants from Parexel during the conduct of the study; and grants from Novartis, Pfizer, and Eli Lilly and grants and personal fees from Roche outside the submitted work. Dr Kim reported participating as a consultant in an advisory board for AstraZeneca, Lilly, Enzymech Lifesciences, Dae Hwa Pharmaceutical Co Ltd, ISU Abios, and Daiichi Sankyo and receiving research funding (paid to institution) from Novartis, Sanofi-Aventis, and Dongkook Pharmaceutical Co Ltd outside the submitted work. Dr Petráková reported receiving personal fees from Novartis, Roche, Merck Sharp & Dohme, and Pfizer outside the submitted work. Dr Yardley reported a consultant/advisory role (paid to institution) for Bristol Myers Squibb, Genentech/ Roche, Eisai, Biotheranostics, and Seattle Genetics outside the submitted work. Dr Rugo reported receiving personal fees from MacroGenics during the conduct of the study; and grants from Daiichi Sankyo, grants and personal fees from Roche, Novartis, Pfizer, and Eli Lilly and grants and personal fees from Roche outside the submitted work. Dr Yerushalmi reported receiving grants from Parexel during the conduct of the study; and grants from Novartis, Pfizer, and Eli Lilly and grants and personal fees from Roche outside the submitted work. Dr Yardley reported a consultant/advisory role (paid to institution) for Bristol Myers Squibb, Genentech/ Roche, Eisai, Biotheranostics, and Seattle Genetics outside the submitted work. Dr Rugo reported receiving personal fees from MacroGenics during the conduct of the study; and grants from Daiichi Sankyo, grants and personal fees from Roche, Novartis, Pfizer, and Eli Lilly and grants and personal fees from Roche outside the submitted work. Dr Yerushalmi reported receiving grants from Parexel during the conduct of the study; and grants from Novartis, Pfizer, and Eli Lilly and grants and personal fees from Roche outside the submitted work. Dr Yardley reported a consultant/advisory role (paid to institution) for Bristol Myers Squibb, Genentech/ Roche, Eisai, Biotheranostics, and Seattle Genetics outside the submitted work.

Published online January 22, 2021.

E9
Efficacy of Margetuximab vs Trastuzumab in Pretreated ERBB2-Positive Advanced Breast Cancer

Research Original Investigation

E10 JAMA Oncology Published online January 22, 2021

MacroGenics, Inc.

This study was supported by MacroGenics. No other disclosures were reported.

Pfizer and AstraZeneca outside the submitted work. Dr Kaufman reported receiving salary, stocks, and stock options from MacroGenics as compensation as a condition of employment. Dr Koenig is an employee of MacroGenics and reported holding a patent to US20180298100 pending and a patent to US20160257761 pending. Drs Nordstrom, Hong, and Rock and Mr Edlich are or were employees of MacroGenics. No other disclosures were reported.

Group Information for the SOPHIA Study:

Campus Virga Jesse, Hasselt, Renaud Poncin, MD, CHUCL Namur–Site Sainte-Elisabeth, Belgium; Séverine Altintas, MD, PhD, UZ Antwerpen – Oncologie, Edegem, Annelore Barbeaux, MD, CHR Verviers East Belgium, Verviers, Jean-François Baurain, MD, PhD, Cliniques Universitaires Saint-Luc – Oncology, Bruxelles, Marlene Boms, MD, AZ Groeninge – Campus Loopstraat, Kortrijk, Nele Claeys, MD, AZ Sint-Jan Brugge – Oostende AV – Campus Sint-Jan Brugge, Caterina Conferente, MD, INDIC Entité Jolimontoise – CH de Jolimont-Lobbes, Haïne-Saint-Paul, Ines Deleu, MD, AZ Nikolaos – Campus Sint-Niklaas Moerlandt, Sint-Niklaas, Luc Dierckx, MD, AZ Ziekenhuis Kortrijk – Campus Sint-Augustinus, Wilrijk, Christel Fontaine, MD, UZ Brussel – Campus Jette, Bruxelles, Marie-Pascale Graa, MD, CHC MontLégia, Liège, Stephanie Henry, MD, Donatienne Taylor, MD, CHUCL Namur–Site Sainte-Elisabeth, Belgium; Thomas Bachelot, MD, PhD, Centre Léon Berard, Lyon Cedex OB, Etienne Brain, MD, PhD, Institut Curie – Hôpital René Huguenin, Saint-Cloud, Mario Campone, MD, PhD, Centre de Lutte contre Le Cancer – Institut de Cancer, Saint Herblain, Bruno Coudert, MD, and Audrey Henquenne, MD, Centre Georges Fransois Leclerc, Dijon, Veronique Diéras, MSc, MSc, Centre De Lutte Contre Le Cancer – Institut Curie, Paris; Jean-Marc Ferrero, MD, University Côte d’Azur, Centre Antoine Lacassagne, Nice, Cyril Foa, MD, and Robert Herve, Hôpital Privé Clärval, Marseille, Christelle Levy, MD, Centre François Baclesse, Institut Normand du Sein, Caen Cedex 5, Marie-Ange Mouret-Reynier, Centre Jean Perrin, Clermont-Ferrand Cedex 1, Francesco Ricci, MD, PhD, Centre De Lutte Contre Le Cancer – Institut Curie, Paris; Germany – Bahriye Aktas, MD, PhD, and Oliver Hoffmann, MD, PhD, Universitätsklinik fuer Frauenheilkunde, Essen, Nikolai Kangemann, MD, Campus Charité Mitte, Berlin, Malgorzata J Banyuls-Paluchowski, MD, and Gerhard Gebauer, MD, MBA, Katholisches Marienkrankenhau gGmbH – Frauenklinik, Hamburg, Wolfgang Eiermann, MD, Interdisziplinäres Onkologisches Zentrum, München, München, Peter A. Fasching, MD, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friederich Alexander University of Erlangen-Nuremberg, Erlangen, Aristoteles Giagounidis, MD, Marien Hospital Düsseldorf, Düsseldorf, Eva-Maria Grischke, MD, Universitätsklinikum Tübingen, Tübingen, John Hackmann, MD, Marien Hospital, Witten, Meinolf Karthaus, MD, Städtisches Krankenhaus München-Neuperlach, München, Anita Prechtl, MD, Praxis für Frauenheilkunde, München, Andreas Schneeweiss, MD, University Hospital Heidelberg Heidelberg, Pauline Wimberger, MD, Medizinische Fakultät Carl Gustav Carus, Dresden; Israel – Nael Efrat, MD, Kaplan Medical Center, Rehovot, David Geffen, MD, and Margarita Toker, MD, Soroka University Medical Center, Beer Sheva, Goldhaber Gadassah, MD, Galilee Medical Center, Nahariya, Najalia Karmine, MD, The Edith Wolfson Medical Center, Holon, Bella Kaufman, MD, Chaim Sheba Medical Center, Breast Oncology Institute, Ramat Gan, Iryna Kuchuk, MD, Meir Medical Center, Kfar Saba, Michelle Leviov, MD, Clalit Health Services – Lin Medical Center, Haifa, Larisa Ryko, MD, and Ido Wolff, MD, Tel Aviv Sourasky Medical Center, Tel Aviv, Beatrice Uziely, MD, Hadassah Medical Center, Jerusalem, Rinat Verushalmi, MD, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva; Italy – Antonio Ardizzoia, MD, Presidio Ospedaliero “Alessandro Manzoni”, Lecco, Rossana Berardi, MD, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi, Ancona, Antonio Bernardi, MD, and Lorenzo Pavesi, MD, Istituti Clinici Scientifici Maugeri, Pavia, Laura Bigonzoli, MD, Nuovo Ospedale di Prato Santo Stefano, Prato, Roberto Bordonaro, MD, Presidio Ospedaliero Paribaldi-Nesima, Catania, Marco Colonnei, MD, European Institute of Oncology, Milan, Giuseppe Curiglano, MD, PhD, European Institute of Oncology, University of Milano, Milan, Mauro D’Amico, MD, Ente Ospedaliero Ospedali Galliera, Genova, Bruno Daniele, MD, and Vincenza Tinesia, MD, Azienda Ospedaliero San Paolo, Presidio Gaetano Rummo, Benevento, Michelino De Laurentiis, MD, PhD, Istituto Nazionale Tumori “Fondazione Pascale”, Naples, Alfredo Falcone, MD, Azienda Ospedaliero-Universitaria Pisana Santa Chiara, Pisa, Gabriella Farina, MD, and Nicia Maria La Verde, MD, Azienda Ospedaliera Fatebenefratelli e Oftalmico, Milano, Guido Francini, MD, Azienda Ospedaliero Universitaria Senese, Siena, Antonio Frassoldati, MD, Azienda Ospedaliero-Universitaria “Arcispedale Sant’Anna”, Ferrara, Daniele Generali, MD, Presidio Ospedaliero di Cremona, Donatella Grasso, MD, and Paolo Pedrazzoli, MD, Fondazione IRCCS Policlinico San Matteo, Pavia, Vito Lorusso, MD, Istituto Oncologico Giovanni Paolo II, Bari, Gabriele Luppi, MD, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Paolo Marchetti, MD, Azienda Ospedaliero-Universitaria Sant’Andrea, Roma, Filippo Montemurro, MD, Istituto di Candiolo, Candiolo, Antonino Musolino, MD, PhD, MSc, University of Parma – University Hospital of Parma, Parma, Andrea Rocca, MD, Istituto Scientifico Romagnolo per lo Studio e la Cura del Cancro, Sant’Anna, Meldola, Elena Rota Caremoli, MD, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Enzo Ruggeri, MD, Ospedale Belcolle, Viterbo, Armando Santoro, MD, Istituto Clinico Humanitas, Rozzano, Giuseppe Tonini, MD, Policlinico Universitario Campus Bio-Medico, Roma, Sean Seow, MD, PhD, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Young-Hyuck Im, MD, PhD, Samsung Medical Center, Seoul, Sung-Bae Kim, MD, PhD, Asan Medical Center, Seoul, Joo Hyuk Sohn, MD, PhD, Severance Hospital, Yonsei University Health System, Seoul, the Netherlands – Maaike de Boer, MD, PhD, Maastricht University Medical Center, GROW-School of Oncology and Developmental Biology, Maastricht, Francisus Erdkamp, MD, Stichting Zuyderland Medisch Centrum, Sittard-Geleen, Daniel Houtsma, MD, and Johanna Portelje, MD, PhD, Haga Ziekenhuis, Leiden, Robbert van Alphen, MD, Elisabeth-Tweesteden Ziekenhuis, Tilburg, Poland; Barbara Bauer-Kosinska, MD, Mazowiecki Szpital Onkologiczny, Wieliszew, Dorota Garnarek-Lange, MD, PhD, Wojewódzki Szpital Specjalistyczny we Wrocławiu, Wroclaw, Bartosz Trzciński, MD, and Tomasz Sarosek, MD, PhD, Madagnost Sp. z o.o. Szpital Elblaska, Warszawa, Tomasz Jankowski, MD, PhD, Centrum Onkologii Ziemi Lubelskiej im. sw. Jana z Dukli, Lublin, Zbigniew Nowecki, MD, PhD, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie – Państwowy Instytut Badawczy, Warszawa, Tadeusz Pieniowski, MD, PhD, Radomske Centrum Onkologii, Warszawa, Piotr Wysocki, MD, PhD, Spozl Szpital Universystrycki w Krakowie, Uniwersyteckie Leczniczwo Szpitalne, Kraków; Portugal – Miguel Abreu, MD, Centro de Oncologia Francisco Gentil do Porto, Porto, Patima Cardoso, MD, and Maria Rita Dionisio, MD, Champalimaud Clinical Center – Champalimaud Foundation, Lisboa, Luis Costa, MD, PhD, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Puerto Rico – Mirelis Acosta, MD, Fundacion de Investigacion de Diego, San Juan; Spain – José Ailis Martinez, MD, PhD, Hospital Nuestra Señora de Sonsoles, Avila, Begonia Bermejo de las Heras, MD, PhD, Hospital Clinico Universitario de Valencia, Beiratz Ciraquiux, MD, Institut Català d’OncoLogia-Hospital Universitari Germans Trias i Pujol, Badalona, Javier Cortes Castan, MD, PhD, IOB Institute of Oncology, Quironsalud Group, Madrid & Barcelona – Vall
Efficacy of Margetuximab vs Trastuzumab in Pretreated ERBB2-Positive Advanced Breast Cancer

Original Investigation Research

Segui Palmer, MD, PhD, Hospital Universitari Parc Rocio, Sevilla, Cristina Saura Manich, MD, PhD, Vall Barcelonès, Madrid, Santiago González Santiago, MD, Hospital San Pedro de Alcántara, Center Madrid, Madrid, Santiago Gómez Rodríguez, MD, MD Anderson Cancer Center, Houston, TX, Raul Oyola, MD, Mayo Clinic, Rochester, MN, and Alex Davidson, MD, Mayo Clinic.

METHODS: This noninferiority phase III trial compared Margetuximab vs. Trastuzumab in 312 pretreated patients with HER2+ advanced breast cancer. Patients were randomized 1:1 to the experimental arm (Margetuximab 8 mg/kg intravenously every 2 weeks plus standard of care) or the control arm (Trastuzumab 6 mg/kg every 3 weeks plus standard of care) totaling 160 patients in each arm. The primary endpoint was the OS in all patients. Secondary endpoints included progression-free survival (PFS), overall response rate (ORR), and safety. With a sample size of 312 patients, assuming a median OS of 12 months, and a 9-month OS 95% CI difference of 0.6 months, the study was powered at 80% to detect a difference between the arms. Secondary endpoints were measured per the RECIST and ipilimumab criteria. Data were collected up to a median follow-up of 19 months.

RESULTS: The median OS was 14.8 months in the Margetuximab arm compared to 12.8 months in the Trastuzumab arm (HR: 0.56, 95% CI: 0.36-0.90; P = 0.014). The median PFS was 7.5 months in the Margetuximab arm compared to 6.1 months in the Trastuzumab arm (HR: 0.67, 95% CI: 0.46-0.98; P = 0.042). The ORR was 48.6% in the Margetuximab arm compared to 37.2% in the Trastuzumab arm (P = 0.027). The study was closed when 129 events were met. Adverse events greater than grade 3 were observed in 61% and 48% of the patients in the Margetuximab and Trastuzumab arms, respectively. No new safety signals were identified.

CONCLUSIONS: Margetuximab demonstrated noninferiority in OS vs. Trastuzumab in pretreated patients with HER2+ advanced breast cancer. The study confirmed the clinical activity of Margetuximab, with a median OS of 14.8 months, and the safety profile was consistent with the known profile of Margetuximab. The study was funded by MacroGenics, Inc., and the authors have no potential conflicts of interest to disclose.

REFERENCES:

Data Sharing Statement: See Supplement 3.

Additional Contributions: The authors thank all of the patients, their families, and the entire staff who participated in this trial. Professional medical writing support was provided by Francesca Balordi, PhD, and Emily Cullinan, PhD, of The Lockwood Group, Stamford, CT, USA, with funding by MacroGenics, Inc., and with Good Publication Practice, GPP3 guidelines, with funding by MacroGenics, Inc., Rockville, Maryland, USA.
Efficacy of Margetuximab vs Trastuzumab in Pretreated ERBB2-Positive Advanced Breast Cancer

