Abstract

Background: While checkpoint inhibitors have dramatically improved disease outcomes for patients with certain types of tumors, a significant proportion of patients do not benefit from these agents. Moreover, checkpoint inhibitors are most effective in immunogenic tumors with high mutational burden and pre-existing T-cell infiltration, an indication of an ongoing but thwarted immune response. Combinations with agents that have complementary mechanisms of action, such as T-cell recruiting agents, may provide expanded benefit to patients with resistance or limited response to checkpoint inhibitor treatment. Oroltamab is a clinical stage B7-H3 x CD3 bispecific DART® molecule designed to redirect T-cells to lyse B7-H3-positive tumor cells. Preclinical studies demonstrated that orlotamab mediates potent anti-tumor activity associated with T-cell activation, expansion and infiltration into tumor sites. Notably, orlotamab activity is also associated with upregulation of PD-1 on T-cells and PD-L1 on both tumor and T cells. To address whether the antitumor activity of orlotamab could be further enhanced by coordinating blockade of the PD-1/PD-L1 pathway, we have performed in vitro and in vivo combination studies of orlotamab with MGA012, a clinical-stage anti-PD-1 mAb, also known as INCMA00012.

Methods: T-cell receptor (TCR)-mediated signaling was evaluated using a PD-1/PD-L1 dependent co-culture reporter system in the presence of orlotamab + MGA012. In vitro redirected T-cell killing assays were performed using JIMT-1-Luc as target cells and T cells as effectors. In vivo studies were conducted in human PBMC-reconstituted xenografts in NCI-1 nude mice. Flow cytometry and cytokine multiplex assays were used to evaluate surface/intracellular markers and cytokine levels.

Results: Blockade of the PD-1/PD-L1 checkpoint axis with MGA012 enhanced B7-H3 expression-dependent, orlotamab-induced NFAT signaling beyond that observed with orlotamab alone in a co-culture reporter assay. MGA012 augmented orlotamab-mediated tumor cell lysis of B7-H3+ tumor cells in redirected T-cell killing assays. In vivo anti-tumor activity of orlotamab was further enhanced by the addition of MGA012 in a human PBMC-reconstituted mouse xenograft model. Mechanism of action studies revealed that orlotamab and MGA012 operate to augment granzyme A/B, perforin expression, T-cell activation and expansion beyond that achieved with orlotamab alone and in a B7-H3-dependent manner. Significantly, MGA012 further increased the fraction of central and effector memory T-cells induced by orlotamab.

Conclusions: The combination of orlotamab with MGA012 extends cellular signaling and T-cell responses in vitro and increased anti-tumor activity in vivo beyond that achieved with orlotamab alone. These proof-of-principle studies provide rationale for clinically testing this combination approach.

Introduction

Oroltamab (B7-H3 x CD3 Bispecific DART® Molecule)

- Oroltamab: Humanized, Fc-bearing B7-H3 x CD3 DART molecule
- Fc engineered for reduced binding to FcR and CD16
- Retains binding to FcγRIII and exhibits IgG1-like half-life

- Intended Function: MOA
- Redirected T-cell killing
- Recruitment and activation of T-cells, irrespective of TCR specificity and MHC restriction
- Expansion of T-cells at tumor site

-Target:
- A member of the B7 family of immune regulators
- B7-H3 expression found in tumors correlated with disease severity and poor outcome
- Indications: NSCLC, H&N, bladder cancers, melanoma, mesothelioma, and others

- Development:
 - Phase 1 monotherapy & combination therapy with MGA012 (on-going)
 - See poster P301

Oroltamab: Anti-tumor Activity and T-cell Recruitment/Expansion

A. Anti-tumor Activity

- CD8+ T-cells were treated with or without orlotamab for 24 hours, stained with viability dye, CD8 and activated marker, then analyzed by flow cytometry.

B. T-cell Expansion at Tumor Site

- Tumor cells were treated with or without orlotamab for 24 hours, stained with viability dye, CD3 and activated marker, then analyzed by flow cytometry.

Oroltamab + MGA012/INCMA00012 (Anti-PD-1 mAb)

- Anti-PD-1
 - MGA012: Humanized, anti-PD-1 mAb
 - Hinge stabilized IgG4
 - Development:
 - Monotherapy dose expansion ongoing (licensed to Immyle) See poster P302
 - Combination therapy with multiple reagents initiated

MGA012 Blocks PD-1/PD-L1 Binding and Reverses PD-1-mediated Immune Inhibition

A. Blockade of soluble PD-1 (100 ng/mL) using MGA012

- A mouse model of PD-1/PD-L1 blockade was used to evaluate the effects of MGA012 on PD-1-mediated immune inhibition.

- Results:
 - MGA012 significantly reduced PD-1 expression on CD8+ T-cells.

Oroltamab-mediated Cytolysis of B7-H3-expressing Cells is Associated with Up-regulation of PD-1 and PD-L1

A. CTL Activity Against JIMT-1

- CTLs were treated with MGA012 or control mAb, then co-cultured with JIMT-1 cells at different ratios over 72 hours.

- Results:
 - MGA012 significantly increased the cytotoxicity of CTLs against JIMT-1 cells.

B. IFN-γ Release

- CTLs were treated with MGA012 or control mAb, then co-cultured with JIMT-1 cells at different ratios over 72 hours.

- Results:
 - MGA012 significantly increased IFN-γ release from CTLs.

C. PD-1 Expression (CD8 Cells)

- CTLs were treated with MGA012 or control mAb, then co-cultured with JIMT-1 cells at different ratios over 72 hours.

- Results:
 - MGA012 significantly increased PD-1 expression on CD8+ T-cells.

D. PD-L1 Expression (CD8 Cells)

- CTLs were treated with MGA012 or control mAb, then co-cultured with JIMT-1 cells at different ratios over 72 hours.

- Results:
 - MGA012 significantly increased PD-L1 expression on CD8+ T-cells.

E. PD-L1 Expression (JIMT-1 Cells)

- JIMT-1 cells were treated with MGA012 or control mAb, then co-cultured with CTLs at different ratios over 72 hours.

- Results:
 - MGA012 significantly increased PD-L1 expression on JIMT-1 cells.

Results

MGA012 Enhances Oroltamab-mediated Anti-Tumor Activity

Detroit-S62 Cell (H&N SCC)

- The level of JIMT-1 target cell cytotoxicity mediated by orlotamab determined by evaluation of LDH release at 48 hrs.

- Orlotamab potency curve over MGA012 concentration. Relative EC50 values were obtained by normalization of EC50 values of orlotamab + MGA012 to that of orlotamab alone.

Oroltamab + MGA012 Cooperate to Augment Granzyme A/B and Perforin Expression

- A representative flow cytometry plot showing % CD4+ orlotamab + MGA012 versus CD4+ orlotamab + control mAb.

- A representative flow cytometry plot showing % CD8+ orlotamab + MGA012 versus CD8+ orlotamab + control mAb.

Oroltamab + MGA012 Cooperate to Enhance T-cell Proliferation

- A representative flow cytometry plot showing % Ki67+ in gated CD4 and CD8 T cells.

MGA012 Increases the Fraction of Memory T Cells Induced by Oroltamab

- A representative flow cytometry plot showing % CD38 high or MGA012 versus CD38 low.

Conclusions

- MGA012 enhances orlotamab-mediated cell signaling and T-cell responses
- MGA012 cooperates with orlotamab to enhance anti-tumor activity in vivo

These proof-of-principle studies provide rationale for the clinical evaluation of orlotamab and MGA012 combination therapy.

Presented at the Society for Immunotherapy of Cancer (SITC) 33rd Annual Meeting, November 7–11, 2018, Washington, DC

©2018 MacroGenics, Inc. All rights reserved.